Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Now hear this: Mouse study sheds light on hearing loss in older adults

10.11.2009
Becoming "hard of hearing" is a standard but unfortunate part of aging: A syndrome called age-related hearing loss affects about 40 percent of people over 65 in the United States, and will afflict an estimated 28 million Americans by 2030.

"Age-related hearing loss is a very common symptom of aging in humans, and also is universal among mammal species, and it's one of the earliest detectable sensory changes in aging," says Tomas Prolla, a professor of genetics and medical genetics at the University of Wisconsin-Madison.

Prolla is senior author of a paper in today's (Nov. 9 ) PNAS that looks at the genetic roots of this type of hearing loss, which is not due to noise exposure.

The study has identified a gene that is essential to age-related hearing loss, a condition marked by deaths of sensory hair cells and spiral ganglion neurons in the inner ear. These cells are at the heart of the conversion of vibrations into nerve impulses that the brain can decipher, and yet these cells cannot be regenerated.

In mice, the new study shows that the damage starts with free radicals, which are key suspects in many harmful changes of aging. Free radicals trigger a process called apoptosis, or programmed cell death, by which damaged cells "commit suicide." Apoptosis is often beneficial, as it eliminates cells that may be destined for cancer.

Before the study, it was already clear that "aging was associated with a major loss of hair cells and ganglion cells, so it was plausible that programmed cell death was playing a role in hearing loss," says Prolla. "We also thought that oxidative stress — the presence of free radicals — contributes to age-related hearing loss, so we put two and two together and showed that oxidative stress does indeed induce age-related hearing loss."

In mice, Prolla and the study's first author, Shinichi Someya, a postdoctoral researcher at UW-Madison, found that the suicide program was operating in hair cells and spiral ganglion neurons, and that the suicide program relied on activity in a suicide gene called bak.

Activity of the bak gene "is required for the development of age-related hearing loss," says Someya. "The strongest evidence for this was the fact that a strain of mice that did not have the bak gene did not show the expected hearing loss at 15 months of age."

In one way, the new results are a bit unusual, Prolla admits. "In most genetic diseases, it's a mutation that causes the disease. In our study, a mutation in the gene prevents the disease."

Someya says he measured mouse hearing with an instrument like that used to test hearing in newborns. "It's a standard test for infants. We place electrodes on the skin above the brain, and when they respond to a sound an electric current is generated from the brainstem, and we detect that current."

The new results, obtained with collaboration from the universities of Florida, Washington and Tokyo, hint that the oxidative stress and hearing loss may be preventable. Although antioxidants have been widely used, with generally disappointing results, to prevent free-radical damage in aging, Someya and Prolla found that two oral antioxidants were effective. "One of the most surprising findings was that these two — alpha lipoic acid and coenzyme Q10 — were very specific in their protection against apoptosis and hearing loss," says Prolla.

Programmed cell death is triggered by mitochondria, small units inside cells that process energy for the cell. But when the mitochondria receive signals indicating that the cell is damaged, they break up and begin the process of apoptosis.

Confirming the importance of mitochondria in hearing loss, both of the helpful antioxidants are known to make mitochondria less responsive to oxidative stress.

The study provides strong evidence linking free radicals, the bak gene and hearing loss, Prolla says. "We wanted to know how oxidative stress leads to deaths of these critical cells, and when we looked at mice without bak, they were entirely protected from age-related hearing loss. One of our major findings is that free-radical damage does not kill the cell directly, but rather induces the pathway to programmed cell death. Mice without bak still accumulated oxidative damage, but did not undergo programmed cell death, did not lose hair cells or these neurons, and their hearing was fine."

Bak may play a role in other age-related conditions, Prolla adds. "This study focused on hearing loss, but there is evidence that other diseases associated with the loss of neurons, like Parkinson's or Alzheimer's, are associated with oxidative stress, and it's possible that the bak protein plays a role in apoptosis in those diseases as well. We are very intrigued by the possibility that blocking bak may have broader utility against neurodegeneration."

— Dave Tenenbaum, 608-265-8549, djtenenb@wisc.edu

Tomas Prolla | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

Control of molecular motion by metal-plated 3-D printed plastic pieces

27.04.2017 | Materials Sciences

Move over, Superman! NIST method sees through concrete to detect early-stage corrosion

27.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>