Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Healing times for dental implants could be cut

15.06.2011
The technology used to replace lost teeth with titanium dental implants could be improved. By studying the surface structure of dental implants not only at micro level but also at nano level, researchers at the University of Gothenburg; Sweden, have come up with a method that could shorten the healing time for patients.

“Increasing the active surface at nano level and changing the conductivity of the implant allows us to affect the body’s own biomechanics and speed up the healing of the implant,” says Johanna Löberg at the University of Gothenburg’s Department of Chemistry. “This would reduce the discomfort for patients and makes for a better quality of life during the healing process.”

Dental implants have been used to replace lost teeth for more than 40 years now. Per-Ingvar Brånemark, who was recently awarded the prestigious European Inventor Award, was the first person to realise that titanium was very body-friendly and could be implanted into bone without being rejected. Titanium is covered with a thin layer of naturally formed oxide and it is this oxide’s properties that determine how well an implant fuses with the bone.

It became clear at an early point that a rough surface was better than a smooth one, and the surface of today’s implants is often characterised by different levels of roughness, from the thread to the superimposed nanostructures. Anchoring the implant in the bone exerts a mechanical influence on the bone tissue known as biomechanical stimulation, and this facilitates the formation of new bone. As the topography (roughness) of the surface is important for the formation of new bone, it is essential to be able to measure and describe the surface appearance in detail. But roughness is not the only property that affects healing.

Johanna Löberg has come up with a method that describes the implant’s topography from micrometre to nanometre scale and allows theoretical estimations of anchoring in the bone by different surface topographies. The method can be used in the development of new dental implants to optimise the properties for increased bone formation and healing. She has also studied the oxide’s conductivity, and the results show that a slightly higher conductivity results in a better cell response and earlier deposition of minerals that are important for bone formation.

The results are in line with animal studies and clinical trials of the commercial implant OsseoSpeed (Astra Tech AB), which show a slightly higher conductivity for the oxide and also an exchange between hydroxide and fluoride on the surface of the oxide. Surfaces with a well-defined nanostructure have a larger active area and respond quickly to the deposition of bone-forming minerals.

The project is a collaboration between the University of Gothenburg and Astra Tech AB in Mölndal, and will be further evaluated in follow-up studies.

The thesis Integrated Biomechanical, Electronic and Topographic Characterization of Titanium Dental Implants was successfully defended at the University of Gothenburg.

For further information, please contact:
Johanna Löberg, Department of Chemistry, University of Gothenburg, tel: +46 (0)31 356 8281, mobile: +46 (0)705 554 787, e-mail: Johanna.Loberg@chem.gu.se / Johanna.Loberg@astratech.com

Helena Aaberg | idw
Further information:
http://hdl.handle.net/2077/25023

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>