Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Healing process found to backfire in lung patients

29.10.2008
A mechanism in the body which typically helps a person heal from an injury, may actually be causing patients with idiopathic pulmonary fibrosis (IPF) to get worse, researchers at the National Institute of Environmental Health Sciences (NIEHS), a part of the National Institutes of Health (NIH), and their collaborators have found.

"We identified a new mechanism that explains why some patients with IPF get more short of breath than others, in spite of similar levels of lung scarring," said Stavros Garantziotis, M.D., an NIEHS staff clinician and lead author on the new paper highlighted on the cover of the Nov. 1 issue of the American Journal of Respiratory and Critical Care Medicine.

Idiopathic pulmonary fibrosis is an incurable lung disease that affects approximately 50,000 people in the United States. In IPF, the lung tissue becomes scarred and patients have difficulty breathing, often resulting in death. The cause is unknown, though genes as well as environmental factors such as smoking and exposure to metal dust particles, are thought to raise the risk.

In healthy individuals, the body has a way of forming new blood vessels that can help heal an injury. For example, if you cut your finger, the body knows to deliver nutrients and cells to the injury site to promote wound healing. However, in patients with IPF, although there is a healing process that occurs, researchers say the process backfires or is disrupted and may be doing the patients more harm than good. Garantziotis explains that this involves a blood protein called inter-alpha-trypsin inhibitor (IaI), which binds with a connective tissue molecule called hyaluronan to make new blood vessels.

In people without IPF, this produces a healing process in the lungs. But Garantziotis says something different happens in people with IPF.

"Instead of building healthy new tissue to heal the scarring in the lungs, patients with higher IaI levels develop vessels that are far away from where they should be, pushing the blood away from the lung and bypassing the area where the body gets its oxygen, thus causing more shortness of breath," Garantziotis explains. Patients with IPF may suffer from low oxygen levels and shortness of breath beyond the actual effects of lung scarring itself.

The researchers applied a true bench-to-bedside approach for this study. Starting with basic research findings from in vitro cell and experimental animal studies, they were then able to demonstrate, in patients with IPF, that higher IaI serum levels were associated with less ability to take up oxygen, thus worsening the patients' condition.

The researchers say there are at least two reasons why this study is important. First, it demonstrates for the first time the important role that a blood circulating protein plays in lung function. Secondly, it identifies a potential new therapeutic target for IPF.

In addition to the NIEHS, other collaborators on the paper include the Angiogenesis Core Facility, National Cancer Institute, Gaithersburg, Md.; Duke University Medical Center, Durham, N.C.; Vanderbilt University Medical Center, Nashville, Tenn.; Institute for Molecular Science of Medicine, Aichi Medical University, Aichi, Japan; National Jewish Medical and Research Center, Denver; and the National Heart, Lung, and Blood Institute, Bethesda, Md.

The NIEHS supports research to understand the effects of the environment on human health and is part of the NIH. For more information on environmental health topics, please visit our website at http://www.niehs.nih.gov.

The National Institutes of Health (NIH) - The Nation's Medical Research Agency - includes 27 Institutes and Centers and is a component of the U. S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical, and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases.

Reference: Garantziotis S, Zudaire E, Trempus CS, Hollingsworth JW, Jiang D, Lancaster LH, Richardson E, Zhuo L, Cuttitta F, Brown KK, Noble PW, Kimata K, Schwartz DA. Serum inter-alpha-trypsin inhibitor and matrix hyaluronan promote angiogenesis in fibrotic lung injury, Am J Resp Crit Care, 2008;178:939-47.

Robin Mackar | EurekAlert!
Further information:
http://www.niehs.nih.gov
http://www.nih.gov/

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>