Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to help heal an injured joint

21.03.2011
Knee patients need patience: injuries to these joints take weeks to heal. Fraunhofer researchers have now developed a system that documents the healing process in detail. This motivates patients and at the same time helps doctors to fine-tune the course of treatment.

There’s nothing like the sheer delight of sun and snow on a skiing trip. But a momentary lapse of concentration can have nasty consequences. Taking a tumble on the slopes often causes injuries – most commonly to the knee.

Weeks can go by before knees regain their full function, and patients are obliged to re-learn how to walk. The time it takes for the knee to heal is directly related to how well it reacts to the chosen treatment. But how is an orthopedic doctor to evaluate the healing process? And how are patients to know what progress they are making? Currently, doctors can only perform limited function tests, whilst patients are obliged to rely on their own subjective feelings.

Now researchers from the Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart have developed a system for gathering exact data on knee mobility. It shows patients as well as medical staff how the joint is doing. “It not only lets sufferers see how their healing process is coming along; it also means doctors can tell straight away whether they need to adapt the treatment,” says Dipl.-Ing. Bernhard Kleiner of Fraunhofer IPA. “This can give patients a psychological boost.” They might not feel they are getting any better, but the system highlights every little improvement in knee mobility. “And that’s very motivating,” says Kleiner.

This is how the novel approach for monitoring the treatment works: Special sensors are placed in a kind of bracket that is integrated into the bandage. These register the knee’s range of movement over a period of time to determine exactly how patients are moving their knee. A new piece of software evaluates these data and presents them in an easy-to-understand format. It sounds pretty simple but it was a tough challenge for the engineers, because such angular measurement systems have only ever been used in industry up to now. The central question was how to place the sensors onto the human body without inconveniencing the patient. The answer, researchers found, lay in using lightweight materials and miniaturizing the sensors, which fall into two categories: angular measurement systems that are based on magnetic principles; and acceleration and rate-of-rotation sensors.

Depending on the injury and treatment, the system not only records the joint’s range of movement but can also determine to what degree it rotates and what forces are acting upon it. The sensors observe movements and store data non-stop. This allows doctors to observe how the knee’s range of movement changes over time, so they can recognize trends and, where necessary, adjust the treatment. What is more, the various fittings for the sensor systems have been designed by the researchers not to restrict freedom of movement in any way, meaning patients do not even notice that their joint is being monitored.

“We would like to apply the measurement of human kinematics to other parts of the body in future,” says Kleiner, and the Fraunhofer researchers have already set their sights on the shoulder and the hips. However, these joints are even more demanding because the system will have to measure their movement about all three axes. To achieve this, engineers are coupling 3-D sensor systems with appropriate software. Visitors to the MEDTEC Europe trade show (March 22-24, 2011, Hall 6, Booth 6211) will have a chance to see the experts demonstrating how mobile joint monitoring works.

Bernhard Kleiner | EurekAlert!
Further information:
http://www.fraunhofer.de/en/press/research-news/2010-2011/15/how-to-help-heal-an-injured-joint.jsp

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>