Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Head injury causes the immune system to attack the brain

20.10.2014

Scientists have uncovered a surprising way to reduce the brain damage caused by head injuries - stopping the body's immune system from killing brain cells.

The study, published in the open access journal Acta Neuropathologica Communications, showed that in experiments on mice, an immune-based treatment reduced the size of brain lesions. The authors suggest that if the findings apply to humans, this could help prevent brain damage from accidents, and protect players of contact sports like American football, rugby and boxing.

To date, there are no effective treatments to prevent or reverse the damage sustained after brain injury. The researchers were testing the theory that blows to the head cause brain damage, in part, because of the breakdown of the blood-brain barrier, allowing the immune cells in the blood to come into contact with brain cells and destroy them. They hypothesized that mice missing a vital immune component would have less brain damage from trauma, and that a treatment which blocks a component of the immune system would prevent damage.

The component they were working on was CD74, which plays a crucial part in the immune system's response to disease-causing agents. CD74 is broken into products that fit into the groove of cell surface immune response proteins as part of the chain of events that activates T cells – immune cells that normally attack infected (or damaged) cells in the body.

It was thought that these cells might also attack the brain cells if the blood-brain barrier is down. A treatment known as CAP stops the T-cells from being activated, by fitting into the activation site in the proteins and blocking the interaction, meaning that the pathway cannot continue.

They tested this theory by a range of tests involving a total of 32 mice. The mice were divided into groups that had the different combinations of: CD74 deficient mice vs control mice; a sham brain injury or a real brain injury; and the CAP treatment or a saline injection as a control.

To test the hypothesis that the immune system causes brain damage after a trauma, the scientists compared the lesion size in CD74 deficient mice, vs control strain after a real brain trauma, with the saline injection. They found that the control mice with a fully working immune system had larger lesions, which suggests that the immune system is part of the reason for brain cells breaking down after a trauma.

To test whether the CAP treatment reduced brain damage after trauma, they compared control mice with a real brain injury that were given the CAP treatment against similar mice that were given the saline control. The mice that received the CAP treatment had smaller brain lesions, suggesting that it did reduce the damage caused by brain trauma. They found these lesions were as small as those in the CD74 deficient mice, further supporting the hypothesis that the treatment was successful because it stops the immune system from attacking the brain.

###

Media Contact
Alanna Orpen
PR Assistant
BioMed Central
T: +44 (0)20 3192 2054
E: alanna.orpen@biomedcentral.com

Notes to Editor

1. Research
Traumatic brain injury causes selective, CD74-dependent, peripheral lymphocyte activation that exacerbates neurodegeneration
Richard P Tobin, Sanjib Mukherjee, Jessica M Kain, Susannah K Rogers, Stephanie K Henderson, Heather L Motal, M. Karen Newell Rogers and Lee A Shapiro
Acta Neuropathologica Communications 2: 143

During embargo, please contact Alanna Orpen (alanna.orpen@biomedcentral.com) for a copy of the paper.

After embargo, article available at journal website here: http://www.actaneurocomms.org/content/2/1/143

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

2. Acta Neuropathologica Communications publishes experimental and descriptive articles on the pathology of nervous system and skeletal muscle disorders and on mechanisms of neurological disease using morphological, molecular and cell biology methods.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Alanna Orpen | Eurek Alert!

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>