Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Head injury causes the immune system to attack the brain

20.10.2014

Scientists have uncovered a surprising way to reduce the brain damage caused by head injuries - stopping the body's immune system from killing brain cells.

The study, published in the open access journal Acta Neuropathologica Communications, showed that in experiments on mice, an immune-based treatment reduced the size of brain lesions. The authors suggest that if the findings apply to humans, this could help prevent brain damage from accidents, and protect players of contact sports like American football, rugby and boxing.

To date, there are no effective treatments to prevent or reverse the damage sustained after brain injury. The researchers were testing the theory that blows to the head cause brain damage, in part, because of the breakdown of the blood-brain barrier, allowing the immune cells in the blood to come into contact with brain cells and destroy them. They hypothesized that mice missing a vital immune component would have less brain damage from trauma, and that a treatment which blocks a component of the immune system would prevent damage.

The component they were working on was CD74, which plays a crucial part in the immune system's response to disease-causing agents. CD74 is broken into products that fit into the groove of cell surface immune response proteins as part of the chain of events that activates T cells – immune cells that normally attack infected (or damaged) cells in the body.

It was thought that these cells might also attack the brain cells if the blood-brain barrier is down. A treatment known as CAP stops the T-cells from being activated, by fitting into the activation site in the proteins and blocking the interaction, meaning that the pathway cannot continue.

They tested this theory by a range of tests involving a total of 32 mice. The mice were divided into groups that had the different combinations of: CD74 deficient mice vs control mice; a sham brain injury or a real brain injury; and the CAP treatment or a saline injection as a control.

To test the hypothesis that the immune system causes brain damage after a trauma, the scientists compared the lesion size in CD74 deficient mice, vs control strain after a real brain trauma, with the saline injection. They found that the control mice with a fully working immune system had larger lesions, which suggests that the immune system is part of the reason for brain cells breaking down after a trauma.

To test whether the CAP treatment reduced brain damage after trauma, they compared control mice with a real brain injury that were given the CAP treatment against similar mice that were given the saline control. The mice that received the CAP treatment had smaller brain lesions, suggesting that it did reduce the damage caused by brain trauma. They found these lesions were as small as those in the CD74 deficient mice, further supporting the hypothesis that the treatment was successful because it stops the immune system from attacking the brain.

###

Media Contact
Alanna Orpen
PR Assistant
BioMed Central
T: +44 (0)20 3192 2054
E: alanna.orpen@biomedcentral.com

Notes to Editor

1. Research
Traumatic brain injury causes selective, CD74-dependent, peripheral lymphocyte activation that exacerbates neurodegeneration
Richard P Tobin, Sanjib Mukherjee, Jessica M Kain, Susannah K Rogers, Stephanie K Henderson, Heather L Motal, M. Karen Newell Rogers and Lee A Shapiro
Acta Neuropathologica Communications 2: 143

During embargo, please contact Alanna Orpen (alanna.orpen@biomedcentral.com) for a copy of the paper.

After embargo, article available at journal website here: http://www.actaneurocomms.org/content/2/1/143

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

2. Acta Neuropathologica Communications publishes experimental and descriptive articles on the pathology of nervous system and skeletal muscle disorders and on mechanisms of neurological disease using morphological, molecular and cell biology methods.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Alanna Orpen | Eurek Alert!

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>