Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Halting immune response could save brain cells after stroke

14.03.2014

A new study in animals shows that using a compound to block the body's immune response greatly reduces disability after a stroke.

The study by scientists from the University of Wisconsin School of Medicine and Public Health also showed that particular immune cells – CD4+ T-cells produce a mediator, called interleukin (IL) -21 that can cause further damage in stroke tissue. Moreover, normal mice, ordinarily killed or disabled by an ischemic stroke, were given a shot of a compound that blocks the action of IL-21. Brain scans and brain sections showed that the treated mice suffered little or no stroke damage.

"This is very exciting because we haven't had a new drug for stroke in decades, and this suggests a target for such a drug," says lead author Dr. Zsuzsanna Fabry, professor of pathology and laboratory medicine.

Stroke is the fourth-leading killer in the world and an important cause of permanent disability. In an ischemic stroke, a clot blocks the flow of oxygen-rich blood to the brain. But Fabry explains that much of the damage to brain cells occurs after the clot is removed or dissolved by medicine. Blood rushes back into the brain tissue, bringing with it immune cells called T-cells, which flock to the source of an injury.

The study shows that after a stroke, the injured brain cells provoke the CD4+ T-cells to produce a substance, IL-21, that kills the neurons in the blood-deprived tissue of the brain. The study gave new insight how stroke induces neural injury.

Fabry's co-author Dr. Matyas Sandor, professor of pathology and laboratory medicine, says that the final part of the study looked at brain tissue from people who had died following ischemic strokes. It found that CD4+ T-cells and their protein, IL-21 are in high concentration in areas of the brain damaged by the stroke.

Sandor says the similarity suggests that the protein that blocks IL-21 could become a treatment for stroke, and would likely be administered at the same time as the current blood-clot dissolving drugs.

"We don't have proof that it will work in humans," he says, "but similar accumulation of IL-21 producing cells suggests that it might."

Graduate student Benjamin S. D. Clarkson and scientist Changying Ling were key members of the UW research team, as was Dr. Dandan Sun, formerly of the UW neurosurgery department and now at the University of Pittsburgh, and Dr. Vijay Kuchroo, of the Harvard Medical School.

The paper was published this week in the Journal of Experimental Medicine. A link is available here: http://bit.ly/NToPfg

###

The study was supported by the American Heart Association/American Stroke Association, the UW Cellular and Molecular Pathology Graduate Program and the National Institutes of Health via grant numbers NS037570, NS076946, AI048087 and AI068730.

Susan Lampert Smith | EurekAlert!

Further reports about: CD4+ Medicine brain cells clot damage immune injury interleukin ischemic stroke stroke

More articles from Health and Medicine:

nachricht Using DNA origami to build nanodevices of the future
31.08.2015 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht An ounce of prevention: Research advances on 'scourge' of transplant wards
28.08.2015 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>