Hallucinations in the flash of an eye

In the September Issue of Cortex Dominic H. ffytche at the Institute of Psychiatry in London reviews what we do know and moves the field forward, by introducing a new experimental approach to studying hallucinations as they occur.

Surprisingly little is known about brain changes that occur during hallucinations because of their brief, unpredictable nature. One cannot anticipate when a hallucination will occur, so the chances of capturing one during a brain scanning experiment are small.

It has long been recognized that flashes of light at particular frequencies produce hallucinations of intricate patterns and vivid colours. Using a combination of brain imaging methods in normal subjects, the author harnesses the technique to examine localized changes in brain activity and changes in brain connections during hallucinations.

“We observed increases in activity in visual brain regions”, says ffytche, “Increases in visual connection strength and an alteration in relationship between visual relay and receiving stations, together suggesting that hallucinations were caused by a transient form of 'blindness'”.

The work highlights the need to consider the hallucinating brain from a wider perspective than previously thought. Changes in both localized brain activity and in connections between brain areas occur during hallucinations, raising further questions as to how these changes interact with pre-existing abnormalities in patients susceptible to hallucinations.

Media Contact

Valeria Brancolini alfa

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors