Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New half-match bone marrow transplant procedure yields promising outcomes for cancer patients

02.09.2011
Kimmel Cancer Center at Jefferson clinical trial found improved overall survival in blood cancer patients who received two-step, half-match bone marrow transplant procedure

Half-matched bone marrow or stem cell transplants for blood cancer patients have typically been associated with disappointing clinical outcomes. However, a clinical trial conducted at the Kimmel Cancer Center at Jefferson testing its unique, two-step half-match procedure has produced some promising results: the probability of overall survival was 45 percent in all patients after three years and 75 percent in patients who were in remission at the time of the transplant.

Reporting in the journal Blood in a published-ahead-of-print article dated August 25, Neal Flomenberg, M.D., Chair of the Department of Medical Oncology at Thomas Jefferson University Hospital, Dolores Grosso, DNP, Co-Principal Investigator and lead author of the article, and colleagues discuss the results of 27 patients treated on this phase I/II trial who had diagnoses that included leukemia, lymphoma and myelodysplasia.

The patients received their transplant in two steps. First, after receiving radiation therapy to further treat their disease, the patients were given a specified dose of T cells (a type of immune cell that fights infection) from their half-matched family donor. The donors were parents, siblings or children of the patient. The patients next received the drug cyclophosphamide to help the newly infused donor T cells to be more tolerant to the patient's body. The second step of the transplant occurred when the patients received a dose of their donors' stem cells to help their blood counts return to normal and further strengthen their new immune system.

Dr. Flomenberg and his team found that after a follow-up of 28-56 months, overall survival for the patients after one year was 54 percent and 48 percent at three years. Patients in remission at the time of the transplant fared better with an overall survival of 75 percent. Seventeen of the 27 patients—with a median age of 52 years old—were alive six months after their transplant, which was the official end point of the trial.

While more recent studies have shown promising increases in overall survival for patients undergoing half-match transplants, historically, clinical outcomes for these types of transplants have been poor, which has limited the use of this type of procedure.

The results of the Jefferson trial represent a very promising improvement in this area.

Bone marrow or stem cell transplants are performed in order to replace a patient's diseased immune system with that of a healthy donor. Traditionally, the use of a genetically fully matched donor has been associated with the best results in bone marrow transplant, but many patients lack a fully-matched related or unrelated donor. Almost every patient will have a half-matched donor (also known as a haploidentical donor) in their family, however.

The successful use of haploidentical donors would greatly expand the number of donors available to a patient, extending this therapy to almost everyone who would benefit from receiving a transplant. This would include minority patients, including patients with sickle cell anemia, who do not have as many fully-matched unrelated donors available to them.

"Our half-match bone marrow transplant results open up many doors for different types of patients who can't find an exact match," said Dr. Flomenberg. "It also justifies recommending that patients at high risk for relapse should consider having a half-match transplant early in the treatment of their disease."

"Jefferson's two-step procedure provides promising results that could serve as the basis for further exploration and optimization of the technique," he added.

Jefferson medical oncologists' approach is unique in that the dosage, timing and treatment of donor T cells was carefully controlled and optimized. No other transplant regimen controls the exact amount of donor T cells given. The investigators believe that dosing the T cells in this way helped avoid many of the life-threatening side effects of this type of transplant.

"We believe the dosage and timing of T cells from the donor into the patient is essential for success. In fact, it's equally as important as prescribing specific doses of radiation and chemotherapy to initially treat the disease," said Dr. Grosso. "The goal of this two-step regimen was to develop a better technique for half-matched patients with relapsed blood cancers initially, but we also showed that it can be appropriate for high risk patients earlier in their disease who lacked fully matched donor options."

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>