Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

H1N1 discovery paves way for universal flu vaccine: UBC research

08.05.2012
University of British Columbia researchers have found a potential way to develop universal flu vaccines and eliminate the need for seasonal flu vaccinations.

Each year, seasonal influenza causes serious illnesses in three to five million people and 200,000 to 500,000 deaths. The 2009 H1N1 pandemic killed more than 14,000 people worldwide. Meanwhile, public health and bioterrorism concerns are heightened by new mutations of the H5N1 "bird flu" virus, published last week by the journal Nature, that could facilitate infection among mammals and humans.

Led by Prof. John Schrader, Canada Research Chair in Immunology and director of UBC's Biomedical Research Centre, the research team found that the 2009 H1N1 "swine flu" vaccine triggers antibodies that protect against many influenza viruses, including the lethal avian H5N1 "bird flu" strain.

Details are published today in the journal Frontiers in Immunology.

"The flu virus has a protein called hemagglutinin, or HA for short. This protein is like a flower with a head and a stem," says Schrader, a professor in Medicine and Pathology and Laboratory Medicine. "The flu virus binds to human cells via the head of the HA, much like a socket and plug.

"Current flu vaccines target the head of the HA to prevent infections, but because the flu virus mutates very quickly, this part of the HA changes rapidly, hence the need for different vaccines every flu season."

Vaccines contain bits of weak or dead germs that prompt the human immune system to produce antibodies that circulate in the blood to kill those specific germs. However, the research team found that the 2009 pandemic H1N1 vaccine induced broadly protective antibodies capable of fighting different variants of the flu virus.

"This is because, rather than attacking the variable head of the HA, the antibodies attacked the stem of the HA, neutralizing the flu virus," says Schrader. "The stem plays such an integral role in penetrating the cell that it cannot change between different variants of the flu virus."

The new discovery could pave the way to developing universal flu vaccines.

Schrader says the characteristics of the human immune system make it difficult for influenza vaccines to induce broadly protective antibodies against the HA stem. "The pandemic H1N1 swine flu was different, because humans had not been exposed to a similar virus," he adds.

Schrader has evidence that a vaccine based on a mixture of influenza viruses not circulating in humans but in animals should have the same effect and potentially make influenza pandemics and seasonal influenza a thing of the past.

The research team consists of scientists from UBC, the Universities of Ottawa and Toronto, the Ontario Agency for Health Protection and Promotion, the Canadian Food Inspection Agency and the BC Centre for Disease Control. The research was supported by grants from the Canadian Institutes for Health Research, the International Consortium for Anti-Virals and the Michael Smith Foundation for Health Research.

Prof. John Schrader | EurekAlert!
Further information:
http://www.brc.ubc.ca

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>