Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

H1N1 discovery paves way for universal flu vaccine: UBC research

08.05.2012
University of British Columbia researchers have found a potential way to develop universal flu vaccines and eliminate the need for seasonal flu vaccinations.

Each year, seasonal influenza causes serious illnesses in three to five million people and 200,000 to 500,000 deaths. The 2009 H1N1 pandemic killed more than 14,000 people worldwide. Meanwhile, public health and bioterrorism concerns are heightened by new mutations of the H5N1 "bird flu" virus, published last week by the journal Nature, that could facilitate infection among mammals and humans.

Led by Prof. John Schrader, Canada Research Chair in Immunology and director of UBC's Biomedical Research Centre, the research team found that the 2009 H1N1 "swine flu" vaccine triggers antibodies that protect against many influenza viruses, including the lethal avian H5N1 "bird flu" strain.

Details are published today in the journal Frontiers in Immunology.

"The flu virus has a protein called hemagglutinin, or HA for short. This protein is like a flower with a head and a stem," says Schrader, a professor in Medicine and Pathology and Laboratory Medicine. "The flu virus binds to human cells via the head of the HA, much like a socket and plug.

"Current flu vaccines target the head of the HA to prevent infections, but because the flu virus mutates very quickly, this part of the HA changes rapidly, hence the need for different vaccines every flu season."

Vaccines contain bits of weak or dead germs that prompt the human immune system to produce antibodies that circulate in the blood to kill those specific germs. However, the research team found that the 2009 pandemic H1N1 vaccine induced broadly protective antibodies capable of fighting different variants of the flu virus.

"This is because, rather than attacking the variable head of the HA, the antibodies attacked the stem of the HA, neutralizing the flu virus," says Schrader. "The stem plays such an integral role in penetrating the cell that it cannot change between different variants of the flu virus."

The new discovery could pave the way to developing universal flu vaccines.

Schrader says the characteristics of the human immune system make it difficult for influenza vaccines to induce broadly protective antibodies against the HA stem. "The pandemic H1N1 swine flu was different, because humans had not been exposed to a similar virus," he adds.

Schrader has evidence that a vaccine based on a mixture of influenza viruses not circulating in humans but in animals should have the same effect and potentially make influenza pandemics and seasonal influenza a thing of the past.

The research team consists of scientists from UBC, the Universities of Ottawa and Toronto, the Ontario Agency for Health Protection and Promotion, the Canadian Food Inspection Agency and the BC Centre for Disease Control. The research was supported by grants from the Canadian Institutes for Health Research, the International Consortium for Anti-Virals and the Michael Smith Foundation for Health Research.

Prof. John Schrader | EurekAlert!
Further information:
http://www.brc.ubc.ca

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>