Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gutenberg Brain Study & Mainz Resilience Project launch study on resilience mechanisms in the brain

19.11.2014

Improvement of prevention and treatment of mental disorders as a long term goal

Why do some people become mentally ill when exposed to stress while others do not? Which genetic factors underlie the processes that maintain our mental equilibrium?

These are the two core questions being considered in the Gutenberg Brain Study (GBS) and also, even more specifically, in the Mainz Resilience Project (MARP). In a large-scale sample that is representative of the population as a whole, the researchers involved in the Gutenberg Brain Study are collecting basic mental health and genetic data from 5,000 randomly selected healthy subjects living in Mainz and the district of Mainz-Bingen.

Their objective is to build up a database and biobank. MARP uses state-of-the-art techniques of functional brain imaging to investigate the mechanisms of resilience to stress-related mental dysfunctions. Using the insights gained into brain function and the maintenance of brain health, the researchers intend to improve and complement the preventive and therapeutic strategies used in connection with mental illnesses. GBS and MARP are projects of the recently established German Resilience Center Mainz, the first center for resilience research in Europe.

The brain is the most complex organ in the human body and our understanding of how it functions is still very limited. We know with some certainty that genetic and environmental factors and their interaction determine the health of the brain. Clinical experience shows that it is also determined by protective and self-regulatory mechanisms, which convey resilience, and by potentially damaging stressors that can increase the risk of illness.

"In our research into resilience, we focus in particular on the resilience mechanisms of the brain. The question why many people suffer only temporary problems or do not get ill at all despite experiencing significant mental and physical stress is of considerable importance. Humans have the capacity to maintain or recover their mental equilibrium even if they are subjected to various kinds of stress. Active biological processes are involved and this represents a very exciting new field of research.

In view of social transformation, growing insecurity about the future, and the increasing incidence of psychiatric disease, discovering protective mental health mechanisms is a question that is highly relevant to society as a whole," explained PD Dr. Oliver Tüscher, Scientific Director of the GBS and the Clinical Investigation Center (CIC) of the Research Unit Translational Neurosciences at Johannes Gutenberg University Mainz (JGU). Patron of the GBS is Doris Ahnen, the Minister of Education, Science, Continuing Education, and Cultural Affairs of Rhineland-Palatinate.

However, the Gutenberg Brain Study is more than just a clinical research project. It functions as a study platform for translational, genetic, and resilience-related neuro-research at the Mainz Clinical Investigation Center. The main aim of the GBS is, therefore, to create a population-based subject pool with an associated biobank as a research resource and to use this for further investigations of brain structure and function in so-called GBS-affiliated projects.

"The GBS is a pioneering interdisciplinary research project that combines genetics, epidemiology, and systemic neurosciences. With its help, we can continue to extend our activities in the translational sector and promote the work of the Research Center Translational Neurosciences," emphasized the Chief Scientific Officer of the Mainz University Medical Center, Professor Ulrich Förstermann.

The Mainz Resilience Project (MARP) is an example of a core GBS-associated project. For this project, young, healthy study subjects are being recruited who are in the specific and often difficult life phase of transition from school and adolescence to working life. In order to document their mental health and the stress factors to which they are exposed over time, the researchers will monitor the subjects for several years. They thus hope that they will be able to identify significant protection mechanisms in the brain and related characteristics as well as the mental abilities that provide for psychological resilience. The long-term objective is to develop effective prevention programs that will bring alleviation to individuals and reduce the associated economic and social costs.

The associated projects of the Gutenberg Brain Study that are investigating genetic imaging and neural resilience mechanisms are receiving third-party funding from the European Research Council and the Rhineland-Palatinate Trust for Innovation. In addition, the GBS is an integral component of several current applications that have been submitted to the German Research Foundation and the German Federal Ministry of Education and Research.

The projects are, like the GBS, affiliated with the newly established German Resilience Center Mainz in which the Research Center Translational Neurosciences has combined all its resources in this field. The center’s core objectives can be defined as 'Understanding, Prevention, Change.' Its main activities will be neurobiological research into resilience mechanisms, the development of evidence-based forms of intervention to increase resilience, and dialog with society as a whole in order to put in place policies that will provide for resilience-enhancing lifestyle and environmental strategies. The Director of the German Resilience Center Mainz is Professor Robert Nitsch, Coordinator of the Research Center Translational Neuroscience and Director of the Institute of Microscopic Anatomy and Neurobiology of the Mainz University Medical Center. Professor Klaus Lieb, Chairman of the Department of Psychiatry and Psychotherapy of the Mainz University Medical Center, is the center’s Vice Director.

Further information:
http://www.ftn.cic.uni-mainz.de/gbs-gutenberg-brain-study-2
http://www.ftn.cic.uni-mainz.de/gbs-gutenberg-brain-study-2/affiliated-projects-2

Contact:
PD Dr. Oliver Tüscher, Scientific Director of the GBS and the Clinical Investigation Center (CIC) of the Research Unit Translational Neurosciences at Johannes Gutenberg University Mainz (JGU)
phone +49 6131 17-2920, e-mail: oliver.tuescher@unimedizin-mainz.de
http://www.ftn.uni-mainz.de/plattformen  [in German]

Project management:
Dr. Sandra Paryjas, phone +49 6131 17-6566, e-mail: sandra.paryjas@unimedizin-mainz.de

GBS Team, phone +49 6131 17-2572 and -2574, e-mail: gbs@unimedizin-mainz.de

Press contact:
Barbara Reinke, Press and Public Relations of the Mainz University Medical Center,
phone +49 6131 17-7428, fax +49 6131 17-3496, e-mail: pr@unimedizin-mainz.de

About the University Medical Center of Johannes Gutenberg University Mainz
The University Medical Center of Johannes Gutenberg University Mainz is the only facility of its kind in Rhineland-Palatinate. It consists of more than 60 clinics, institutes, and departments. Research and teaching are inextricably linked with medical treatment. Approximately 3,500 students of medicine and dentistry are trained in Mainz on a continuous basis. More information can be found at http://www.unimedizin-mainz.de/index.php?L=1


Weitere Informationen:

http://www.uni-mainz.de/presse/17717_ENG_HTML.php - press release

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>