Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gutenberg Brain Study & Mainz Resilience Project launch study on resilience mechanisms in the brain

19.11.2014

Improvement of prevention and treatment of mental disorders as a long term goal

Why do some people become mentally ill when exposed to stress while others do not? Which genetic factors underlie the processes that maintain our mental equilibrium?

These are the two core questions being considered in the Gutenberg Brain Study (GBS) and also, even more specifically, in the Mainz Resilience Project (MARP). In a large-scale sample that is representative of the population as a whole, the researchers involved in the Gutenberg Brain Study are collecting basic mental health and genetic data from 5,000 randomly selected healthy subjects living in Mainz and the district of Mainz-Bingen.

Their objective is to build up a database and biobank. MARP uses state-of-the-art techniques of functional brain imaging to investigate the mechanisms of resilience to stress-related mental dysfunctions. Using the insights gained into brain function and the maintenance of brain health, the researchers intend to improve and complement the preventive and therapeutic strategies used in connection with mental illnesses. GBS and MARP are projects of the recently established German Resilience Center Mainz, the first center for resilience research in Europe.

The brain is the most complex organ in the human body and our understanding of how it functions is still very limited. We know with some certainty that genetic and environmental factors and their interaction determine the health of the brain. Clinical experience shows that it is also determined by protective and self-regulatory mechanisms, which convey resilience, and by potentially damaging stressors that can increase the risk of illness.

"In our research into resilience, we focus in particular on the resilience mechanisms of the brain. The question why many people suffer only temporary problems or do not get ill at all despite experiencing significant mental and physical stress is of considerable importance. Humans have the capacity to maintain or recover their mental equilibrium even if they are subjected to various kinds of stress. Active biological processes are involved and this represents a very exciting new field of research.

In view of social transformation, growing insecurity about the future, and the increasing incidence of psychiatric disease, discovering protective mental health mechanisms is a question that is highly relevant to society as a whole," explained PD Dr. Oliver Tüscher, Scientific Director of the GBS and the Clinical Investigation Center (CIC) of the Research Unit Translational Neurosciences at Johannes Gutenberg University Mainz (JGU). Patron of the GBS is Doris Ahnen, the Minister of Education, Science, Continuing Education, and Cultural Affairs of Rhineland-Palatinate.

However, the Gutenberg Brain Study is more than just a clinical research project. It functions as a study platform for translational, genetic, and resilience-related neuro-research at the Mainz Clinical Investigation Center. The main aim of the GBS is, therefore, to create a population-based subject pool with an associated biobank as a research resource and to use this for further investigations of brain structure and function in so-called GBS-affiliated projects.

"The GBS is a pioneering interdisciplinary research project that combines genetics, epidemiology, and systemic neurosciences. With its help, we can continue to extend our activities in the translational sector and promote the work of the Research Center Translational Neurosciences," emphasized the Chief Scientific Officer of the Mainz University Medical Center, Professor Ulrich Förstermann.

The Mainz Resilience Project (MARP) is an example of a core GBS-associated project. For this project, young, healthy study subjects are being recruited who are in the specific and often difficult life phase of transition from school and adolescence to working life. In order to document their mental health and the stress factors to which they are exposed over time, the researchers will monitor the subjects for several years. They thus hope that they will be able to identify significant protection mechanisms in the brain and related characteristics as well as the mental abilities that provide for psychological resilience. The long-term objective is to develop effective prevention programs that will bring alleviation to individuals and reduce the associated economic and social costs.

The associated projects of the Gutenberg Brain Study that are investigating genetic imaging and neural resilience mechanisms are receiving third-party funding from the European Research Council and the Rhineland-Palatinate Trust for Innovation. In addition, the GBS is an integral component of several current applications that have been submitted to the German Research Foundation and the German Federal Ministry of Education and Research.

The projects are, like the GBS, affiliated with the newly established German Resilience Center Mainz in which the Research Center Translational Neurosciences has combined all its resources in this field. The center’s core objectives can be defined as 'Understanding, Prevention, Change.' Its main activities will be neurobiological research into resilience mechanisms, the development of evidence-based forms of intervention to increase resilience, and dialog with society as a whole in order to put in place policies that will provide for resilience-enhancing lifestyle and environmental strategies. The Director of the German Resilience Center Mainz is Professor Robert Nitsch, Coordinator of the Research Center Translational Neuroscience and Director of the Institute of Microscopic Anatomy and Neurobiology of the Mainz University Medical Center. Professor Klaus Lieb, Chairman of the Department of Psychiatry and Psychotherapy of the Mainz University Medical Center, is the center’s Vice Director.

Further information:
http://www.ftn.cic.uni-mainz.de/gbs-gutenberg-brain-study-2
http://www.ftn.cic.uni-mainz.de/gbs-gutenberg-brain-study-2/affiliated-projects-2

Contact:
PD Dr. Oliver Tüscher, Scientific Director of the GBS and the Clinical Investigation Center (CIC) of the Research Unit Translational Neurosciences at Johannes Gutenberg University Mainz (JGU)
phone +49 6131 17-2920, e-mail: oliver.tuescher@unimedizin-mainz.de
http://www.ftn.uni-mainz.de/plattformen  [in German]

Project management:
Dr. Sandra Paryjas, phone +49 6131 17-6566, e-mail: sandra.paryjas@unimedizin-mainz.de

GBS Team, phone +49 6131 17-2572 and -2574, e-mail: gbs@unimedizin-mainz.de

Press contact:
Barbara Reinke, Press and Public Relations of the Mainz University Medical Center,
phone +49 6131 17-7428, fax +49 6131 17-3496, e-mail: pr@unimedizin-mainz.de

About the University Medical Center of Johannes Gutenberg University Mainz
The University Medical Center of Johannes Gutenberg University Mainz is the only facility of its kind in Rhineland-Palatinate. It consists of more than 60 clinics, institutes, and departments. Research and teaching are inextricably linked with medical treatment. Approximately 3,500 students of medicine and dentistry are trained in Mainz on a continuous basis. More information can be found at http://www.unimedizin-mainz.de/index.php?L=1


Weitere Informationen:

http://www.uni-mainz.de/presse/17717_ENG_HTML.php - press release

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>