Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut microbes in healthy kids carry antibiotic resistance genes

14.11.2013
Friendly microbes in the intestinal tracts (guts) of healthy American children have numerous antibiotic resistance genes, according to results of a pilot study by scientists at Washington University School of Medicine in St. Louis.

The genes are cause for concern because they can be shared with harmful microbes, interfering with the effectiveness of antibiotics in ways that can contribute to serious illness and, in some cases, death.

"From birth to age 5, children receive more antibiotics than during any other five-year time span in their lives," said senior author Gautam Dantas, PhD, assistant professor of pathology and immunology. "Frequent exposure to antibiotics accelerates the spread of antibiotic resistance. Our research highlights how important it is to only use these drugs when they are truly needed."

The results appear Nov. 13 in PLOS ONE.

With funding from the Children's Discovery Institute, the International Center for Advanced Renewable Energy and Sustainability, the National Academies Keck Futures Initiative and the National Institutes of Health (NIH), the researchers analyzed fecal samples from 22 infants and children ranging in age from six months to 19 years. The samples were provided by Phillip Tarr, MD, the Melvin E. Carnahan Professor of Pediatrics at Washington University School of Medicine.

Despite the small sample size, the analysis identified 2,500 new antibiotic resistance genes, expanding the list of known antibiotic resistance genes by more than 30 percent.

"Microbes have been battling each other for millennia, regularly inventing new antibiotic synthesis genes to kill off rivals and new antibiotic resistance genes to defend themselves," Dantas said. "That microbial arms race is where this vast array of genetic resources comes from."

The scientists identified the new resistance genes by testing intestinal microbial DNA from the children against 18 antibiotics. The genes they identified impaired the effectiveness of all but four of the drugs. Many of the resistance genes were found clustered on sections of DNA that can easily jump from one microbe to another.

Babies lack microbes in their intestinal tracts at birth. Scientists have shown that infants establish their communities of gut microbes through ingestion of microorganisms from their environment – from crawling on the floor, for example, to putting toys and other objects into their mouths, to nursing and other contacts with their primary caregivers.

Dantas and his colleagues have been leaders in the development of functional metagenomics, in which scientists identify and analyze all the DNA from a microbial community. Instead of focusing either only on individual cultured organisms or computationally predicting functions from DNA sequences, researchers experimentally screen the DNA for specific functions, such as antibiotic resistance.

Dantas' primary research interest is the ecology and evolution of antibiotic resistance. According to a recent report by the Centers for Disease Control and Prevention, antibiotic-resistant infections cause at least 2 million illnesses and 23,000 deaths annually, adding $20 billion in health-care costs. Dantas noted that methicillin-resistant Staphylococcus aureus, one of the most dangerous antibiotic-resistant bacteria, now causes more deaths in the United States than HIV. Scientists use the term resistome to refer to the collective antibiotic resistance genes of a microbial community.

"There were quite a few resistance genes in microbes from every child we looked at," Dantas said. "This was true even in children who were only six months old. When we compared their resistomes to those of older children, there didn't seem to be much difference."

Dantas' results, which must be confirmed through additional testing, suggest the resistome in the gut may become fixed more quickly than the distribution of species in the microbial community. The latter typically stabilizes three years after birth, but the study suggests the resistome may be set as early as six months after birth.

"This study gives us a snapshot of antibiotic resistance genes at single points in different children's lives," he said. "We're now analyzing the resistome's development via samples taken from the same children at multiple points in their lives."

Moore AM, Patel S, Forsberg KJ, Wang B, Bentley G, Razia Y, Qin X, Tarr PI, Dantas G. Pediatric fecal microbiota harbor diverse and novel antibiotic resistance genes, PLOS ONE, online Nov. 13, 2013.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>