Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking research finds human sweat can reduce bacteria defenses

18.06.2014

University of Leicester researchers discover sweat can cause corrosion of protective qualities of door knobs and taps within an hour of contact

Sweaty hands can reduce the effectiveness of bacteria-fighting brass objects in hospitals and schools after just an hour of coming into contact with them, according to scientists at the University of Leicester.

While copper found in everyday brass items such as door handles and water taps has an antimicrobial effect on bacteria and is widely used to prevent the spread of disease, Dr John Bond OBE from the University of Leicester's Department of Chemistry has discovered that peoples' sweat can, within an hour of contact with the brass, produce sufficient corrosion to adversely affect its use to kill a range of microorganisms, such as those which might be encountered in a hospital and which can be easily transferred by touch or by a lack of hand hygiene.

Dr Bond explained: "The antimicrobial effect of copper has been known for hundreds of years. It is thought to occur as a result of a charge exchange between copper and bacteria, which leads to a degradation of the bacteria DNA. We have discovered that the salt in sweat corrodes the metal, forming an oxide layer on its surface, which is the process of corrosion - and this corrosive layer is known to inhibit the effect of the copper.

We have shown that it is possible for sweat to produce an oxide layer on the metal within an hour of contact.

"While it is well known that sweat corrodes brass, this is the first study to quantitatively analyse the temporal corrosion of copper alloys such as brass in the first few hours after contact between fingerprint sweat concentrations of salt and the metal."

The research paper entitled 'Electrochemical behaviour of brass in chloride solution concentrations found in eccrine fingerprint sweat', published in the journal Applied Surface Science was co-authored by Elaine Lieu as part of a third year Interdisciplinary Science project investigating how easily and quickly sweat can corrode brass at the University of Leicester.

Dr Bond added: "Opportunities to improve hospital hygiene are being investigated by the University of Leicester from seemingly un-connected areas of research. This research is a different application of the study of fingerprint sweat corrosion of brass, applied to hygiene rather than to crime investigation.

"My short term advice is to keep the brass in public environments free from corrosion through regular and thorough cleaning. In the longer term, using copper alloys with corrosion inhibitors included in the alloy would be a good choice.

"While more research is needed in the study of sweat and brass corrosion, anywhere that needs to prevent the spread of bacteria, such as public buildings, schools and hospitals should be looking at using copper alloy on everyday items to help in avoiding the spread of disease."

Dr. John Bond | Eurek Alert!
Further information:
http://www.leicester.ac.uk

Further reports about: Electrochemical antimicrobial bacteria concentrations copper defenses

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>