Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking research finds human sweat can reduce bacteria defenses

18.06.2014

University of Leicester researchers discover sweat can cause corrosion of protective qualities of door knobs and taps within an hour of contact

Sweaty hands can reduce the effectiveness of bacteria-fighting brass objects in hospitals and schools after just an hour of coming into contact with them, according to scientists at the University of Leicester.

While copper found in everyday brass items such as door handles and water taps has an antimicrobial effect on bacteria and is widely used to prevent the spread of disease, Dr John Bond OBE from the University of Leicester's Department of Chemistry has discovered that peoples' sweat can, within an hour of contact with the brass, produce sufficient corrosion to adversely affect its use to kill a range of microorganisms, such as those which might be encountered in a hospital and which can be easily transferred by touch or by a lack of hand hygiene.

Dr Bond explained: "The antimicrobial effect of copper has been known for hundreds of years. It is thought to occur as a result of a charge exchange between copper and bacteria, which leads to a degradation of the bacteria DNA. We have discovered that the salt in sweat corrodes the metal, forming an oxide layer on its surface, which is the process of corrosion - and this corrosive layer is known to inhibit the effect of the copper.

We have shown that it is possible for sweat to produce an oxide layer on the metal within an hour of contact.

"While it is well known that sweat corrodes brass, this is the first study to quantitatively analyse the temporal corrosion of copper alloys such as brass in the first few hours after contact between fingerprint sweat concentrations of salt and the metal."

The research paper entitled 'Electrochemical behaviour of brass in chloride solution concentrations found in eccrine fingerprint sweat', published in the journal Applied Surface Science was co-authored by Elaine Lieu as part of a third year Interdisciplinary Science project investigating how easily and quickly sweat can corrode brass at the University of Leicester.

Dr Bond added: "Opportunities to improve hospital hygiene are being investigated by the University of Leicester from seemingly un-connected areas of research. This research is a different application of the study of fingerprint sweat corrosion of brass, applied to hygiene rather than to crime investigation.

"My short term advice is to keep the brass in public environments free from corrosion through regular and thorough cleaning. In the longer term, using copper alloys with corrosion inhibitors included in the alloy would be a good choice.

"While more research is needed in the study of sweat and brass corrosion, anywhere that needs to prevent the spread of bacteria, such as public buildings, schools and hospitals should be looking at using copper alloy on everyday items to help in avoiding the spread of disease."

Dr. John Bond | Eurek Alert!
Further information:
http://www.leicester.ac.uk

Further reports about: Electrochemical antimicrobial bacteria concentrations copper defenses

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>