Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking research finds human sweat can reduce bacteria defenses

18.06.2014

University of Leicester researchers discover sweat can cause corrosion of protective qualities of door knobs and taps within an hour of contact

Sweaty hands can reduce the effectiveness of bacteria-fighting brass objects in hospitals and schools after just an hour of coming into contact with them, according to scientists at the University of Leicester.

While copper found in everyday brass items such as door handles and water taps has an antimicrobial effect on bacteria and is widely used to prevent the spread of disease, Dr John Bond OBE from the University of Leicester's Department of Chemistry has discovered that peoples' sweat can, within an hour of contact with the brass, produce sufficient corrosion to adversely affect its use to kill a range of microorganisms, such as those which might be encountered in a hospital and which can be easily transferred by touch or by a lack of hand hygiene.

Dr Bond explained: "The antimicrobial effect of copper has been known for hundreds of years. It is thought to occur as a result of a charge exchange between copper and bacteria, which leads to a degradation of the bacteria DNA. We have discovered that the salt in sweat corrodes the metal, forming an oxide layer on its surface, which is the process of corrosion - and this corrosive layer is known to inhibit the effect of the copper.

We have shown that it is possible for sweat to produce an oxide layer on the metal within an hour of contact.

"While it is well known that sweat corrodes brass, this is the first study to quantitatively analyse the temporal corrosion of copper alloys such as brass in the first few hours after contact between fingerprint sweat concentrations of salt and the metal."

The research paper entitled 'Electrochemical behaviour of brass in chloride solution concentrations found in eccrine fingerprint sweat', published in the journal Applied Surface Science was co-authored by Elaine Lieu as part of a third year Interdisciplinary Science project investigating how easily and quickly sweat can corrode brass at the University of Leicester.

Dr Bond added: "Opportunities to improve hospital hygiene are being investigated by the University of Leicester from seemingly un-connected areas of research. This research is a different application of the study of fingerprint sweat corrosion of brass, applied to hygiene rather than to crime investigation.

"My short term advice is to keep the brass in public environments free from corrosion through regular and thorough cleaning. In the longer term, using copper alloys with corrosion inhibitors included in the alloy would be a good choice.

"While more research is needed in the study of sweat and brass corrosion, anywhere that needs to prevent the spread of bacteria, such as public buildings, schools and hospitals should be looking at using copper alloy on everyday items to help in avoiding the spread of disease."

Dr. John Bond | Eurek Alert!
Further information:
http://www.leicester.ac.uk

Further reports about: Electrochemical antimicrobial bacteria concentrations copper defenses

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>