Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking research finds human sweat can reduce bacteria defenses

18.06.2014

University of Leicester researchers discover sweat can cause corrosion of protective qualities of door knobs and taps within an hour of contact

Sweaty hands can reduce the effectiveness of bacteria-fighting brass objects in hospitals and schools after just an hour of coming into contact with them, according to scientists at the University of Leicester.

While copper found in everyday brass items such as door handles and water taps has an antimicrobial effect on bacteria and is widely used to prevent the spread of disease, Dr John Bond OBE from the University of Leicester's Department of Chemistry has discovered that peoples' sweat can, within an hour of contact with the brass, produce sufficient corrosion to adversely affect its use to kill a range of microorganisms, such as those which might be encountered in a hospital and which can be easily transferred by touch or by a lack of hand hygiene.

Dr Bond explained: "The antimicrobial effect of copper has been known for hundreds of years. It is thought to occur as a result of a charge exchange between copper and bacteria, which leads to a degradation of the bacteria DNA. We have discovered that the salt in sweat corrodes the metal, forming an oxide layer on its surface, which is the process of corrosion - and this corrosive layer is known to inhibit the effect of the copper.

We have shown that it is possible for sweat to produce an oxide layer on the metal within an hour of contact.

"While it is well known that sweat corrodes brass, this is the first study to quantitatively analyse the temporal corrosion of copper alloys such as brass in the first few hours after contact between fingerprint sweat concentrations of salt and the metal."

The research paper entitled 'Electrochemical behaviour of brass in chloride solution concentrations found in eccrine fingerprint sweat', published in the journal Applied Surface Science was co-authored by Elaine Lieu as part of a third year Interdisciplinary Science project investigating how easily and quickly sweat can corrode brass at the University of Leicester.

Dr Bond added: "Opportunities to improve hospital hygiene are being investigated by the University of Leicester from seemingly un-connected areas of research. This research is a different application of the study of fingerprint sweat corrosion of brass, applied to hygiene rather than to crime investigation.

"My short term advice is to keep the brass in public environments free from corrosion through regular and thorough cleaning. In the longer term, using copper alloys with corrosion inhibitors included in the alloy would be a good choice.

"While more research is needed in the study of sweat and brass corrosion, anywhere that needs to prevent the spread of bacteria, such as public buildings, schools and hospitals should be looking at using copper alloy on everyday items to help in avoiding the spread of disease."

Dr. John Bond | Eurek Alert!
Further information:
http://www.leicester.ac.uk

Further reports about: Electrochemical antimicrobial bacteria concentrations copper defenses

More articles from Health and Medicine:

nachricht The STING of radiation
21.11.2014 | Ludwig Institute for Cancer Research

nachricht Fat a culprit in fibrotic lung damage
20.11.2014 | Thomas Jefferson University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Regional economic cooperation in Central Asia

21.11.2014 | Event News

Educating the Ecucators

13.11.2014 | Event News

36th Annual IATUL Conference 2015: Call for papers and posters

12.11.2014 | Event News

 
Latest News

Laser from a plane discovers Roman goldmines in Spain

21.11.2014 | Earth Sciences

Darwin 2.0

21.11.2014 | Life Sciences

Siemens Receives Power Island Order with H-class Turbine Technology in Ohio, U.S.A.

21.11.2014 | Press release

VideoLinks
B2B-VideoLinks
More VideoLinks >>>