Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green tea helps mice keep off extra pounds

05.10.2011
Green tea may slow down weight gain and serve as another tool in the fight against obesity, according to Penn State food scientists.

Obese mice that were fed a compound found in green tea along with a high-fat diet gained weight significantly more slowly than a control group of mice that did not receive the green tea supplement, said Joshua Lambert, assistant professor of food science in agricultural sciences.

"In this experiment, we see the rate of body weight gain slows down," said Lambert.

The researchers, who released their findings in the current online version of Obesity, fed two groups of mice a high-fat diet. Mice that were fed Epigallocatechin-3-gallate -- EGCG -- a compound found in most green teas, along with a high-fat diet, gained weight 45 percent more slowly than the control group of mice eating the same diet without EGCG.

"Our results suggest that if you supplement with EGCG or green tea you gain weight more slowly," said Lambert.

In addition to lower weight gain, the mice fed the green tea supplement showed a nearly 30 percent increase in fecal lipids, suggesting that the EGCG was limiting fat absorption, according to Lambert.

"There seems to be two prongs to this," said Lambert. "First, EGCG reduces the ability to absorb fat and, second, it enhances the ability to use fat."

The green tea did not appear to suppress appetite. Both groups of mice were fed the same amount of high-fat food and could eat at any time.

"There's no difference in the amount of food the mice are eating," said Lambert. "The mice are essentially eating a milkshake, except one group is eating a milkshake with green tea."

A person would need to drink ten cups of green tea each day to match the amount of EGCG used in the study, according to Lambert. However, he said recent studies indicate that just drinking a few cups of green tea may help control weight.

"Human data -- and there's not a lot at this point -- shows that tea drinkers who only consume one or more cups a day will see effects on body weight compared to nonconsumers," said Lambert.

Lambert, who worked with Kimberly Grove and Sudathip Sae-tan, both graduate students in food science, and Mary Kennett, professor of veterinary and biomedical sciences, said that other experiments have shown that lean mice did not gain as much weight when green tea is added to a high fat diet. However, he said that studying mice that are already overweight is more relevant to humans because people often consider dietary changes only when they notice problems associated with obesity.

"Most people hit middle age and notice a paunch; then you decide to eat less, exercise and add green tea supplement," said Lambert.

The National Institutes of Health supported this work.

Matt Swayne | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: EGCG Green IT food science high-fat diet weight gain

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>