Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grape Seed Promise in Fight Against Bowel Cancer

17.02.2014
University of Adelaide research has shown for the first time that grape seed can aid the effectiveness of chemotherapy in killing colon cancer cells as well as reducing the chemotherapy’s side effects.

Published in the prestigious journal PLOS ONE, the researchers say that combining grape seed extracts with chemotherapy has potential as a new approach for bowel cancer treatment – to both reduce intestinal damage commonly caused by cancer chemotherapy and to enhance its effect.

Lead author Dr Amy Cheah says there is a growing body of evidence about the antioxidant health benefits of grape seed tannins or polyphenols as anti-inflammatory agents and, more recently, for their anti-cancer properties.

“This is the first study showing that grape seed can enhance the potency of one of the major chemotherapy drugs in its action against colon cancer cells,” says Dr Cheah, researcher in the School of Agriculture, Food and Wine.

“Our research also showed that in laboratory studies grape seed taken orally significantly reduced inflammation and tissue damage caused by chemotherapy in the small intestine, and had no harmful effects on non-cancerous cells. Unlike chemotherapy, grape seed appears to selectively act on cancer cells and leave healthy cells almost unaffected.”

The researchers used commercially available grape seed extract, a by-product of winemaking. Tannins extracted from the grape seed were freeze-dried and powdered. The extract was tested in laboratory studies using colon cancer cells grown in culture.

The research showed grape seed extract:

• showed no side effects on the healthy intestine at concentrations of up to 1000mg/kg;

• significantly decreased intestinal damage compared to the chemotherapy control;

• decreased chemotherapy-induced inflammation by up to 55%

• increased growth-inhibitory effects of chemotherapy on colon cancer cells in culture by 26%

“Our experimental studies have shown that grape seed extract reduced chemotherapy-induced inflammation and damage and helped protect healthy cells in the gastrointestinal tract,” says Dr Cheah. “While this effect is very promising, we were initially concerned that grape seed could reduce the effectiveness of the chemotherapy.”

“In contrast, we found that grape seed extract not only aided the ability of chemotherapy to kill cancer cells, but was also more potent than the chemotherapy we tested at one concentration.”

Co-author and project leader Professor Gordon Howarth says: “Grape seed is showing great potential as an anti-inflammatory treatment for a range of bowel diseases and now as a possible anti-cancer treatment. These first anti-cancer results are from cell culture and the next step will be to investigate more widely.”

Fellow co-author and joint lead researcher Dr Sue Bastian, Senior Lecturer in Oenology, says: “These findings could be a boost to the wine grape industry as it value adds to what is essentially a by-product of the winemaking process.”

Media Contact:

Dr Amy Cheah
Researcher
School of Agriculture, Food and Wine
The University of Adelaide
Mobile: +61 (0)433 910 099
ker.cheah@adelaide.edu.au
Professor Gordon Howarth
Cancer Council Senior Research Fellow
School of Animal and Veterinary Sciences
The University of Adelaide
Phone: +61 8 8313 7885
Mobile: +61 420 958 402
gordon.howarth@adelaide.edu.au
Robyn Mills
Media Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Robyn Mills | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>