Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grain Legume Crops Sustainable, Nutritious

11.06.2014

Popular diets across the world typically focus on the right balance of essential components like protein, fat, and carbohydrates.

These items are called macronutrients, and we consume them in relatively large quantities. However, micronutrients often receive less attention. Micronutrients are chemicals, including vitamins and minerals, that our bodies require in very small quantities. Common mineral micronutrients include zinc, iron, manganese, magnesium, potassium, copper, and selenium.


Tom Warkentin, University of Saskatchewan

A new variety of pea, CDC Saffron. Peas contain micronutrients essential for good nutrition.

A recent study published in Crop Science examined the mineral micronutrient content of crops grown in the province of Saskatchewan, Canada. The study was conducted jointly by the University of Saskatchewan and North Dakota State University. The researchers examined four types of grain legumes (pulses)—field peas, lentils, chickpeas, and common bean.

Although these legumes have up to twice the micronutrients as cereals, according to Tom Warkentin, professor of plant breeding at the University of Saskatchewan, they are not cultivated on the same scale as cereals in most countries. Therefore, grain legume crops are often overlooked as potentially valuable sources of micronutrients.

Diets that do not provide adequate amounts of micronutrients lead to a variety of diseases that affect most parts of the human body. Warkentin says, “Iron deficiency is the most common, followed by zinc, carotenoids, and folate.”

The study found that genetic characteristics (genotype) as well as environmental conditions—such as soil properties and local climate—can affect the micronutrient content of grain legumes. The researchers measured micronutrient levels by a technique known as atomic absorption spectrometry. According to Warkentin, “In the case of selenium, we found that environmental conditions are more important than genotype.”

Warkentin notes, “A 100-gram (3 ½-ounce) serving of any one of the four grain legume crops studied provided a substantial portion of the recommended daily allowance (RDA) of iron, zinc, selenium, magnesium, manganese, copper, and nickel.” The serving size was based on the dry weight of the grain legumes. He adds that lentils were the best source of iron, while chickpeas and common bean were higher in magnesium. Calcium was the only key micronutrient that these crops lacked.

Interestingly, most of the crops studied were high in selenium, with chickpeas and lentils being the best sources. Selenium is an important but often overlooked micronutrient. Selenium deficiency can lead to diseases that weaken heart muscles and cause breakdown of cartilage. It can also give rise to hypothyroidism, since selenium is a required chemical in the production of thyroid hormone.

Warkentin concludes, “Increased production and consumption of grain legume crops should be encouraged by agriculturalists and dietitians around the world.” Since grain legume crops don’t require nitrogen-based fertilizers, which are derived from fossil fuels, they are very sustainable. Warkentin also says, “Grain legume crops are highly nutritious. In addition to the micronutrients described in this research, they also contain 20-25% protein, 45-50% slowly digestible starch, soluble and insoluble fiber, and are low in fat.”

Access the full article here:

http://dx.doi.org/doi:10.2135/cropsci2013.08.0568

Susan Fisk | newswise
Further information:
http://www.sciencesocieties.org

Further reports about: Agronomy CSSA Grain SSSA Saskatchewan Soil copper crops genotype legume micronutrient micronutrients selenium zinc

More articles from Health and Medicine:

nachricht New evidence: How amino acid cysteine combats Huntington's disease
27.07.2016 | Johns Hopkins Medicine

nachricht Cord blood outperforms matched, unrelated donor in bone marrow transplant
27.07.2016 | University of Colorado Anschutz Medical Campus

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

World first demo of labyrinth magnetic-domain-optical Q-switched laser

28.07.2016 | Information Technology

New material could advance superconductivity

28.07.2016 | Materials Sciences

CO2 can be stored underground for 10 times the length needed to avoid climatic impact

28.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>