Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glutamate:Too Much of a Good Thing in Schizophrenia?

28.10.2008
Is schizophrenia a disorder of glutamate hyperactivity or hypoactivity?

While the predominant hypothesis for many years was that schizophrenia was a glutamate deficit disorder, there is growing evidence of glutamate hyperactivity as well. The study by Karlsson et al., appearing in the November 1st issue of Biological Psychiatry, reinforces this point with new data about the impact of deleting the gene for the glutamate transporter EAAT1.

EAAT1, implicated in schizophrenia, plays a critical role in inactivating glutamate by removing it from the synaptic and extracellular spaces. The authors demonstrate that these “knockout” animals show increased responses to the NMDA glutamate receptor antagonist, MK-801. This drug causes the release of more glutamate into the synapse in the frontal cortex. This effect of MK-801 is reduced by a group II metabotropic glutamate receptor agonist, which reduces glutamate release.

Dr. Andrew Holmes, corresponding author, further discusses their findings, “Our study adds a new twist to [glutamate] research by showing that genetically disrupting a major regulator of glutamate’s ability to communicate between nerve cells produces certain ‘schizophrenia-like’ features in mice and, moreover, that these abnormalities can be corrected by a highly promising new class of glutamate-targeting antipsychotic treatments.” In fact, this class of drugs has already shown some preliminary efficacy in its ability to treat individuals suffering from schizophrenia.

John H. Krystal, M.D., Editor of Biological Psychiatry and affiliated with both Yale University School of Medicine and the VA Connecticut Healthcare System, comments: “The NMDA receptor antagonist model and the EAAT1 knockout animal push us to take a fresh look at the obstacles to treating cognitive impairments associated with schizophrenia, in other words, optimizing their cortical network function. This new look can lead us to drugs that would have been completely surprising as recently as 10 years ago, such as the group II metabotropic glutamate receptor agonists.”

Dr. Holmes does note that further research is warranted, stating, “What is now needed is more research to get a better handle on how disrupting this gene affects the brain’s neural wiring and molecular signaling pathways to produce the symptoms of schizophrenia.” This finding could ultimately help scientists develop new or improved treatments for this schizophrenia.

Jayne Dawkins | alfa
Further information:
http://www.elsevier.com

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>