Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Glucosamine causes the death of pancreatic cells

28.10.2010
High doses or prolonged use of glucosamine causes the death of pancreatic cells and could increase the risk of developing diabetes, according to a team of researchers at Université Laval's Faculty of Pharmacy. Details of this discovery were recently published on the website of the Journal of Endocrinology.

In vitro tests conducted by Professor Frédéric Picard and his team revealed that glucosamine exposure causes a significant increase in mortality in insulin-producing pancreatic cells, a phenomenon tied to the development of diabetes. Cell death rate increases with glucosamine dose and exposure time.

"In our experiments, we used doses five to ten times higher than that recommended by most manufacturers, or 1,500 mg/day," stressed Professor Picard. "Previous studies showed that a significant proportion of glucosamine users up the dose hoping to increase the effects," he explained.

Picard and his team have shown that glucosamine triggers a mechanism intended to lower very high blood sugar levels. However, this reaction negatively affects SIRT1, a protein critical to cell survival. A high concentration of glucosamine diminishes the level of SIRT1, leading to cell death in the tissues where this protein is abundant, such as the pancreas.

Individuals who use large amounts of glucosamine, those who consume it for long periods, and those with little SIRT1 in their cells are therefore believed to be at greater risk of developing diabetes. In a number of mammal species, SIRT1 level diminishes with age. This phenomenon has not been shown in humans but if it were the case, the elderly—who constitute the target market for glucosamine—would be even more vulnerable.

"The key point of our work is that glucosamine can have effects that are far from harmless and should be used with great caution," concluded Professor Picard.

The results obtained by Picard and his team coincide with recent studies that cast serious doubt on the effectiveness of glucosamine in treating joint problems.

This study was co-authored by Mathieu Lafontaine-Lacasse and Geneviève Doré.

Information:
Frédéric Picard
Faculty of Pharmacy
Université Laval
418-656-8711 ext. 3737
frederic.picard@criucpq.ulaval.ca

Jean-François Huppé | EurekAlert!
Further information:
http://www.ulaval.ca

Further reports about: Diabetes Protein SIRT1 cell death endocrinology glucosamine pancreatic cells

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>