Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global burden of dengue is triple current estimates

08.04.2013
The global burden of dengue infection is more than triple current estimates from the World Health Organization, according to a multinational study published today in the journal 'Nature'.

The research has created the first detailed and up-to-date map of dengue distribution worldwide, enabling researchers to estimate the total numbers of people affected by the virus globally, regionally and nationally. The findings will help to guide efforts in vaccine, drug and vector control strategies.

The study was led by Professor Simon Hay, a Wellcome Trust Senior Research Fellow at the University of Oxford, as part of the International Research Consortium on Dengue Risk Assessment, Management and Surveillance.

Dengue, also known as 'breakbone fever', is a viral infection that is transmitted between humans by mosquitoes. In some people, it causes life-threatening illness.

There are currently no licensed vaccines or specific treatments for dengue, and substantial efforts to control the mosquitoes that transmit the disease have not stopped its rapid emergence and global spread. Until now, little was known about the current distribution of the risk of dengue virus infection and its public health burden around the world.

Dr Samir Bhatt, who led the modelling for the study, says: "Our aim was to take all of the evidence that is currently available on the distribution of dengue worldwide and combine it with the latest in mapping and mathematical modelling to produce the most refined risk maps and burden estimates. We then hope to use this knowledge to help predict the future burden of the disease."

The findings reveal that dengue is ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and urbanisation. The team estimate that there are 390 million dengue infections across the globe each year, of which 96 million reach any level of clinical or subclinical severity. This is more than triple the WHO's most recent estimates of 50-100 million infections per year.

Professor Simon Hay explains: "We found that climate and population spread were important factors for predicting the current risk of dengue around the world. With globalisation and the constant march of urbanisation, we anticipate that there could be dramatic shifts in the distribution of the disease in the future: the virus may be introduced to areas that previously were not at risk, and those that are currently affected may experience increases in the number of infections.

"We hope that the research will initiate a wider discussion about the significant global impact of this disease."

Of the 96 million apparent infections, Asia bore 70 per cent of the burden. India alone accounted for around one-third of all infections. The results indicate that with 16 million infections, Africa's burden is almost equivalent to that of the Americas and is significantly larger than previously appreciated. The authors suggest that the hidden African dengue burden could be a result of the disease being masked by symptomatically similar illnesses, under-reporting and highly variable treatment-seeking behaviour.

Professor Jeremy Farrar, Director of the Wellcome Trust Vietnam Research Programme and Oxford University Clinical Research Unit Hospital for Tropical Diseases in Vietnam, explains that the map and estimates produced by Hay's group set the benchmark for the disease: "This is the first systematic robust estimate of the extent of dengue. The evidence that we've gathered here will help to maximise the value and cost-effectiveness of public health and clinical efforts, by indicating where limited resources can be targeted for maximum possible impact

With endemic transmission in Asia and the Americas, recent outbreaks in Portugal, the ever-increasing incidence in Africa, and the challenges of making an effective dengue vaccine or controlling the vector, Professor Farrar stresses: "This really does represent a crucial period in the global spread of dengue."

Jimmy Whitworth, Head of International Activities at the Wellcome Trust, said: "Over time, this comprehensive map of global disease burden will also help to demonstrate which control measures are making the biggest difference in reducing the number of people suffering from dengue infection. Without a vaccine or specific treatment options, it's crucial that we understand where best to direct the limited resources available for preventing this resurgent disease."

The International Research Consortium on Dengue Risk Assessment, Management and Surveillance is a multinational team of researchers funded by the European Commission to develop new and innovative tools to be applied to the control of dengue in a global context. This study also received funding from the Wellcome Trust, the Department of Homeland Security, Li Ka Shing Foundation and the Fogarty International Center, National Institutes of Health.

The publication of the findings coincides with the first regional meeting of the World Health Summit in Singapore, where health care policy makers, experts, and practitioners are coming together to exchange ideas and find solutions for today's health challenges in Asia.

Jen Middleton | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>