Gladstone scientists identify target that may reduce complications of obesity

To this end, a research team at the Gladstone Institute of Cardiovascular Disease, led by Suneil Koliwad, MD, PhD, recently added new details that link obesity to diabetes and heart disease.

When individuals become obese from overeating, cells called adipocytes located in the fat tissue fill up with dietary fats and begin to die. Immune cells called macrophages move out of the blood stream and into this tissue, where they accumulate around dying adipocytes. As the macrophages work to clear away the dead cells, they are exposed to large amounts of dietary fat that can result in unwanted consequences. Exposure to saturated fats, in particular, causes the macrophages to enter an inflammatory state. In this state, the macrophages secrete cytokines, such as tumor necrosis factor (TNF) alpha, that encourage the development of insulin resistance, diabetes, and heart disease.

The Gladstone team hypothesized that enhancing the capacity of macrophages to store dietary fats might alter this process. To do this, they focused on an enzyme called DGAT1, which makes triglycerides from dietary fats for storage as cellular energy reserves.

They examined a transgenic strain of mice (aP2-Dgat1) that make large amounts of DGAT1 in both adipocytes and macrophages. On a high-fat diet, these mice became obese, but the macrophages in their fat tissue did not undergo inflammatory activation, and the mice were protected from developing systemic inflammation, insulin resistance, and fatty livers, all problems that were profound in the control mice.

Even more interesting was the team's finding that the protection against diet-induced inflammation and insulin resistance could be conferred on normal mice simply by replacing their macrophages with those from aP2-Dgat1 mice by bone marrow transplantation.

“We found in experimental mice that a single enzyme, DGAT1, in macrophages is involved in many of the problems associated with obesity,” said Dr. Koliwad. “This is exciting because humans have this enzyme as well, providing the potential for a therapeutic target to examine.”

Using cultured cells, the team also showed that increasing the amount of DGAT1 expressed by macrophages increased their capacity to store triglycerides and protected them against inflammatory activation by saturated fats. Moreover, DGAT1 expression was increased by treatment of macrophages with PPARgamma agonists, which are widely used agents to treat diabetes, and DGAT1 was required for these agents to protect macrophages against inflammatory activation induced by saturated fats.

“Our results are very exciting,” said Dr. Robert Farese, senior author on the study. “We have used DGAT1 as a tool to uncover a mechanism by which macrophages might protect individuals from developing serious consequences of obesity.”

Koliwad SK, Streeper RS, Monetti M, Cornelissen I, Chan L, Terayama K, Naylot S, Rao M, Hubbard B, Farese RV, Jr. Increased capacity for triacylglycerol synthesis in macrophages protects mice from deleterious consequences of diet-induced obesity. J. Clin. Invest., In press.

Robert V. Farese's primary affiliation is with the Gladstone Institute of Cardiovascular Disease, where he is senior investigator and where his laboratory is located and his research is conducted. He is also a professor of medicine, biochemistry and biophysics at the University of California, San Francisco.

About the Gladstone Institutes. The Gladstone Institutes is a nonprofit, independent research and educational institution, consisting of the Gladstone Institute of Cardiovascular Disease, the Gladstone Institute of Virology and Immunology and the Gladstone Institute of Neurological Disease. Independent in its governance, finances and research programs, Gladstone shares a close affiliation with UCSF through its faculty, who hold joint UCSF appointments.

Media Contact

Valerie Tucker EurekAlert!

More Information:

http://www.ucsf.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors