Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone scientist finds new target for treating symptoms of Parkinson's disease

08.09.2011
Research breakthrough takes significant step towards improving human health

A scientist at the Gladstone Institutes has identified how the lack of a brain chemical known as dopamine can rewire the interaction between two groups of brain cells and lead to symptoms of Parkinson's disease. This discovery offers new hope for treating those suffering from this devastating neurodegenerative disease.

In a paper being published online today in Neuron, Gladstone Investigator Anatol Kreitzer, PhD, identifies how the loss of dopamine alters the wiring of a small group of brain cells, kicking off a chain of events that eventually leads to difficulties controlling movement—a hallmark of Parkinson's disease. More than a half-million people suffer from Parkinson's in the United States, including the boxer Muhammad Ali and the actor Michael J. Fox.

"The development of truly effective and well-tolerated therapies for Parkinson's has proven difficult," said Lennart Mucke, MD, who directs neurological disease research at the Gladstone Institutes, a leading and independent biomedical-research organization. Dr. Mucke is also a professor of neurology and neuroscience at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "Dr. Kreitzer's discovery sheds new light on the intricate processes that underlie motor problems in this disabling condition and will hopefully lead to the development of more effective medicines."

Normally, two types of brain cells called medium spiny neurons, or MSNs, work together to coordinate body movements, with one type acting like a gas pedal and the other as a brake. It has been thought that a reduction in dopamine, an important chemical in the brain, throws off the balance between the two opposing MSN forces, leading to problems with movement. But Dr. Kreitzer wondered if another factor might also be involved. To better understand the relationship between dopamine and MSNs in people with Parkinson's, Dr. Kreitzer artificially removed dopamine from the brains of laboratory mice and monitored the specific changes in the brain that followed.

Just as happens in humans, the mice without dopamine began to experience the motor symptoms of Parkinson's, including tremors, problems with balance and slowed movement. But Dr. Kreitzer found that decreased dopamine levels didn't just throw off the balance between the two types of MSNs, as was already known, but they also changed the interaction between MSNs and another group of neurons called fast-spiking neurons, or FSNs.

Dr. Kreitzer's experiments showed that under normal circumstances, FSNs connect to both types of MSNs in a similar way. But without dopamine, the signaling between the FSN circuits gets rewired and the neurons begin to target one type of MSN over the other. Dr. Kreitzer used computer simulations to show that this small shift disrupts the timing of MSN activity, which is key to normal movement. Ultimately, this rewiring may be an important factor in the development of Parkinson's motor problems.

"Our research has uncovered how an entirely different group of neurons can play a role in the development of Parkinson's disease symptoms," said Dr. Kreitzer, who is also an assistant professor of physiology and neurology at UCSF. "We hope to target the changes among these neurons directly with drug therapies, in order to help relieve some of Parkinson's most debilitating symptoms."

Other scientists who participated in the research at Gladstone include Aryn Gittis, Giao Hang, Eva LaDow and Steven Finkbeiner. Funding for the research came from a wide variety of organizations, including the Tourette Syndrome Association, the National Institutes of Health, the Pew Biomedical Scholars Program, the W.M. Keck Foundation and the McKnight Foundation.

Dr. Kreitzer is an Assistant Investigator at the Gladstone Institute of Neurological Disease and an Assistant Professor of Physiology and Neurology at UCSF. The Kreitzer lab focuses on understanding the neural mechanisms that control motor planning, learning and movement. Their long-term goal is to understand how circuitry and activity in the brain shapes motor behavior and how disorders such as Parkinson's disease and Huntington's disease affect circuits in the brain.

About the Gladstone Institutes

Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent illness and cure patients suffering from cardiovascular disease, neurological disease, or viral infections. Gladstone is affiliated with the University of California, San Francisco.

Anne Holden | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>