Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic testing links 'exceptional' drug response to rare mutations in bladder cancer

13.03.2014

A patient with advanced bladder cancer in a phase I trial had a complete response for 14 months to a combination of the targeted drugs everolimus and pazopanib, report scientists led by a Dana-Farber Cancer Institute researcher, and genomic profiling of his tumor revealed two alterations that may have led to this exceptional response.

This information can help identify cancer patients who may respond to everolimus, according to the report published in Cancer Discovery, a journal of the American Association for Cancer Research.

"Studying exceptional responders can help us understand the specific reasons why some tumors are highly sensitive to certain anticancer agents," said Nikhil Wagle, M.D., of Dana-Farber Cancer Institute, the report's first author. "We can use that information to identify patients whose tumors have genetic alterations similar to those found in exceptional responders, and treat them with those same agents."

Exceptional responders are rare cancer patients whose cancers are extremely sensitive to drugs and who have long-lasting responses to therapy.

"We conducted a phase I clinical trial to test the efficacy of two anticancer agents—the mTOR inhibitor everolimus, and pazopanib, another drug that are approved for treatment of kidney cancers and sarcomas —and one of our patients developed near complete remission of his bladder cancer which lasted for 14 months," said Wagle, who is also an Associate Member of the Broad Institute of MIT and Harvard. A complete response to a drug is when all signs of a tumor disappear.

"We performed whole-exome sequencing of the patient's tumor, and to our surprise, we identified two mutations in the gene mTOR, which is the target for everolimus," said Wagle. The protein made by this gene plays a role in many cell functions, and has been found to be mutated in a number of cancers. MTOR inhibitors such everolimus have been approved for treatment of some cancers, including breast and kidney.

In this phase I trial, the investigators recruited nine patients with advanced solid tumors, including five with bladder cancer, whose diseases had progressed despite treatment with standard therapies. Patients received one to 13 cycles of everolimus and pazopanib.

One of five patients with bladder cancer had a complete response, as evaluated by imaging, which lasted for 14 months. To understand why his tumor responded dramatically, the investigators performed complete sequencing of the coding regions of his tumor genome, which included about 25,000 genes, and identified two mutations in mTOR.

The two mutations, mTOR E2419K and mTOR E2014K, had never been identified in humans, according to Wagle, although one of the mutations had previously been well studied by scientists in yeast and in human cell lines.

Wagle and colleagues conducted further laboratory studies to understand the nature of the two mutations, and found that they activated the mTOR-mediated cell signaling pathway, leading to sustained cancer cell proliferation. These mutations likely rendered the patient's cancer dependent on the mTOR pathway to survive, which is the likely reason the cancer became exquisitely sensitive to the mTOR inhibitor everolimus, explained Wagle.

"Results of our study suggest that we should make a catalogue of activating genome alterations in the mTOR pathway," said Wagle. "Patients with tumors that harbor these alterations might be particularly suitable for treatment with drugs like everolimus and other mTOR inhibitors.

"This is yet another example of how therapies targeted toward the genetic features of a tumor can be highly effective, and our goal moving forward is to be able to identify as many of these genetic features as possible and have as many drugs that target these genetic features as possible, so we can match the drugs to the patients," said Wagle. "There are many more patients out there with extraordinary responses to a variety of anticancer therapies, and it will be of great scientific and clinical value to study them."

###

Senior authors of the report are Levi Garraway, MD, PhD, of Dana-Farber and Senior Associate Member at the Broad, and Jonathan Rosenberg, MD, of Memorial Sloan-Kettering Cancer Center. Rosenberg was at Dana-Farber when the project began.

The research was funded by the Next Generation Fund at the Broad Institute of MIT and Harvard, the National Human Genome Research Institute, GlaxoSmithKline, and Novartis. Wagle is an equity holder and a consultant to Foundation Medicine.

About Dana-Farber Cancer Institute

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center, designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Boston Children's Hospital as Dana-Farber/Boston Children's Cancer and Blood Disorders Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Facebook: http://www.facebook.com/danafarbercancerinstitute and on Twitter: @danafarber.

Teresa Herbert | EurekAlert!

Further reports about: Cancer Dana-Farber Harvard alterations anticancer drugs identify mTOR mutations pathway sensitive tumors

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>