Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Genetically Engineered Mice Aid Understanding of Incurable Neuromuscular Disease, Say University of Missouri Researchers

18.04.2012
A team of scientists from the University of Missouri created a genetically modified mouse that mimics key features of Charcot-Marie-Tooth disease, an inherited neuromuscular disease affecting approximately 150,000 people in the United States.
Charcot-Marie-Tooth, or CMT, is a group of progressive disorders that affects the peripheral nervous system, the part of the nervous system that connects the brain and spinal cord to targets such as muscles. The disease largely affects the distal nerves, those running to the feet and hands, and can progress to include the legs and arms.

“Wasting and weakening of the muscles occurs because the distal nerves are either dying or not functioning properly,” said Michael Garcia, study leader and associate professor of biological sciences. “The condition can be very debilitating depending on the muscles affected and the degree to which they are affected.”

No cure exists for CMT, but Garcia hopes that insights gleaned from the new mouse model may aid the development of therapeutic interventions.

“By learning about the basics of disease initiation and progression, perhaps we can soon test therapeutics designed to stop or reverse the pathology,” he said.

Garcia and colleagues created the mouse model by inserting a mutated copy of a human gene into fertilized mouse egg cell. Similar mutations in that particular gene have been linked to a specific form of CMT, known as Type 2e, in humans. The cells were then implanted into female mice. The offspring that contained the mutated human gene were reared and observed for signs of CMT.

At four months of age, the mice developed a condition with several of the same hallmarks of humans with CMT Type 2e, including muscle wasting and weakness, foot deformities, and reduced ability to move. No significant neural problems or detachment of the nerves from the muscle was observed in the mice, which surprised the scientists.

“With such severe muscle atrophy we expected to see a loss of nerve connections on the muscles, but they are all there, and they look relatively healthy,” said Garcia, who is also an investigator in the Christopher S. Bond Life Sciences Center.

The finding was also surprising since another mouse model, which also mimicked CMT type 2e, did show nerve detachment. This other mouse model, developed by a team in Canada, had a mutation in the same gene but at a different site in the genetic code. According to Garcia, the lack of nerve detachment observed in his mouse model may point to different underlying mechanisms for CMT type 2e.

In a follow-up study, Garcia and colleagues showed that the mice they engineered also developed an abnormal gait. The scientists evaluated the gait of the mice using a so-called CatWalk system, a device that uses light and a high-speed camera to capture certain dynamics of a running mouse’s footfalls. Abnormal gaiting was observed as a decreased paw print overlap and increased hind limb drag on the left side of the body, the authors report in the study.

A high-stepped gait is characteristic of people with CMT. Weakness of the foot and leg muscles often results in foot drop, an inability to move the ankle and toes properly, which is compensated for by raising the foot higher.

“It’s an exciting time for CMT type2e,” said Garcia. “With two really good mouse models, we’re now in a powerful position to begin to ask questions about how the disease initiates and how it progresses.”

Findings from the studies are published in the July 1, 2011, issue of the journal Human Molecular Genetics and in the January 30, 2012, online issue of the journal Genes, Brain, and Behavior.

Funding for this work came from the National Institutes of Health, Charcot-Marie-Tooth Association, and the University of Missouri Research Board.

Timothy Wall | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>