Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic study sheds light on serious childhood disease

09.01.2009
Genetic variations that can predispose children to a serious disease that damages the heart have been identified in a genome-wide association study of Kawasaki Disease, published today in PLoS Genetics.

The disease, the cause of which is currently unknown, is a rare and severe childhood disorder that occurs mainly in young children. It is the most common cause of childhood acquired heart disease in developed countries.

The disease is more common in Japanese children and those of Asian descent, but it is found in all ethnic groups, affecting around 1 in 10,000 children of Caucasian descent.

The new study identifies variations in 31 genes which appear to increase a child’s risk of developing Kawasaki Disease.

The findings will enable scientists to develop more effective ways of tackling the disease, by revealing new targets for treatment, say the researchers, from Imperial College London, the University of Western Australia, the Genome Institute of Singapore, Emma Childrens Hospital, Netherlands, and the University of San Diego California.

Some of the variations identified appear in genes that work together to control signalling between immune cells and heart cells. The researchers are planning to carry out further work to understand how these mutations contribute to the disease.

Epidemiological studies suggest that Kawasaki Disease is triggered by an as yet unidentified infection. It is currently treated using pooled antibodies from healthy donors. This treatment shortens the period of illness and most children recover after two to three weeks. It reduces but does not eliminate the risk of heart disease.

Professor Michael Levin, one of the authors of the study from the Department of Paediatrics at Imperial College London said: “Sadly, all the hospitals in the UK frequently see children with Kawasaki Disease. A child whose coronary arteries are damaged in early childhood faces a lifetime of uncertainty and risk, and we desperately need better treatments to prevent long term heart problems in those affected. We hope our new study will help us to reach this goal.”

Dr Victoria Wright, another author of the study from the Department of Paediatrics at Imperial College London said: “Kawasaki Disease was identified less than fifty years ago so it is a relatively new disease. We still have a long way to go with this research but this is an important step in understanding the disease better.”

For the new study, the international consortium combined their patients to perform a genome-wide association study in 119 Caucasian KD cases and 135 matched controls from Australia, Holland, USA and the UK. They looked at 250000 genetic variants in each patient and uncovered the most significant genes that appeared to be involved in Kawasaki Disease. They then replicated this in an independent cohort of a total of 893 KD cases plus population and family controls.

The researchers are now planning to analyse an Asian cohort of people with Kawasaki Disease, to see if their results can be replicated in this population.

Lucy Goodchild | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>