Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic marker for painful food allergy points to improved diagnosis, treatment

12.03.2012
Researchers have identified a genetic signature for a severe, often painful food allergy – eosinophilic esophagitis – that could lead to improved diagnosis and treatment for children unable to eat a wide variety of foods.

The scientists, from Cincinnati Children's Hospital Medical Center, report in the Journal of Allergy and Clinical Immunology that they have pinpointed a dysregulated microRNA signature for eosinophilic esophagitis (EoE), a disease that also may cause weight loss, vomiting, heartburn and swallowing difficulties.

Interestingly, the dysregulated microRNA was reversible with steroid treatment, according to the study's senior investigator, Marc E. Rothenberg, MD, PhD, director of Allergy and Immunology and the Center for Eosinophilic Disorders at Cincinnati Children's. MicroRNAs are short segments of RNA that can regulate whether genetic messengers (mRNAs) are degraded or translated into protein.

"The identification of biomarkers specific to EoE is a significant advancement for both the diagnosis and treatment of the disease," explains Rothenberg. "The microRNA signature provides an opportunity for more precise analysis of esophageal biopsies."

Rothenberg said children with EoE now undergo anesthesia and invasive endoscopy to diagnose and monitor the allergy. The ability to determine the presence and status of EoE with a noninvasive method, such as blood test that measures microRNAs, would have a positive impact on individuals and families.

In the current study, investigators analyzed esophageal microRNA expression of patients with active EoE, steroid-induced EoE remission, patients with chronic (non-eosinophilic) esophagitis and of healthy individuals. Additionally, they assessed plasma microRNA expression of patients with active EoE, remission of EoE remission and of healthy individuals.

The researchers found that EoE was associated with 32 differentially regulated microRNAs and distinguishable from the non-eosinophilic forms of esophagitis (such as reflux disease). Esophageal eosinophil levels correlated significantly with expression of the most increased microRNAs, miR-21 and miR-223, and most decreased, miR-375. MiR-223 was also one of the most increased microRNAs in the plasma, along with miR-146a and miR-146b.

Notably, the expression of microRNAs dysregulated in patients with active EoE was normalized in patients with EoE who responded to steroid treatment. This suggests a significantly specific microRNA signature for disease activity points to its promise for use as a biomarker for EoE.

Only recently recognized as a distinct condition, the incidence of EoE has been increasing over the past 20 years, as have other allergies. Rothenberg and his laboratory team pioneered research showing EoE's reported incidence is estimated to be at least one in 1,000 people. Its hallmark is swelling and inflammation in the esophagus, accompanied by high levels of immune cells called eosinophils.

EoE can affect people of any age, but is more common among young men who have a history of other allergic diseases, such as asthma and eczema. EoE is often first discovered in children with feeding difficulties and failure to thrive, but it is often misunderstood and not well known, delaying proper diagnosis and treatment.

Several organizations provided funding support for the study, which was released online March 3. These include the National Institutes of Health, the Campaign Urging Research for Eosinophilic Disease (CURED), the Food Allergy Initiative (FAI), and the Buckeye Foundation.

Jim Feuer | EurekAlert!
Further information:
http://www.cchmc.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>