Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Genetic marker for painful food allergy points to improved diagnosis, treatment

Researchers have identified a genetic signature for a severe, often painful food allergy – eosinophilic esophagitis – that could lead to improved diagnosis and treatment for children unable to eat a wide variety of foods.

The scientists, from Cincinnati Children's Hospital Medical Center, report in the Journal of Allergy and Clinical Immunology that they have pinpointed a dysregulated microRNA signature for eosinophilic esophagitis (EoE), a disease that also may cause weight loss, vomiting, heartburn and swallowing difficulties.

Interestingly, the dysregulated microRNA was reversible with steroid treatment, according to the study's senior investigator, Marc E. Rothenberg, MD, PhD, director of Allergy and Immunology and the Center for Eosinophilic Disorders at Cincinnati Children's. MicroRNAs are short segments of RNA that can regulate whether genetic messengers (mRNAs) are degraded or translated into protein.

"The identification of biomarkers specific to EoE is a significant advancement for both the diagnosis and treatment of the disease," explains Rothenberg. "The microRNA signature provides an opportunity for more precise analysis of esophageal biopsies."

Rothenberg said children with EoE now undergo anesthesia and invasive endoscopy to diagnose and monitor the allergy. The ability to determine the presence and status of EoE with a noninvasive method, such as blood test that measures microRNAs, would have a positive impact on individuals and families.

In the current study, investigators analyzed esophageal microRNA expression of patients with active EoE, steroid-induced EoE remission, patients with chronic (non-eosinophilic) esophagitis and of healthy individuals. Additionally, they assessed plasma microRNA expression of patients with active EoE, remission of EoE remission and of healthy individuals.

The researchers found that EoE was associated with 32 differentially regulated microRNAs and distinguishable from the non-eosinophilic forms of esophagitis (such as reflux disease). Esophageal eosinophil levels correlated significantly with expression of the most increased microRNAs, miR-21 and miR-223, and most decreased, miR-375. MiR-223 was also one of the most increased microRNAs in the plasma, along with miR-146a and miR-146b.

Notably, the expression of microRNAs dysregulated in patients with active EoE was normalized in patients with EoE who responded to steroid treatment. This suggests a significantly specific microRNA signature for disease activity points to its promise for use as a biomarker for EoE.

Only recently recognized as a distinct condition, the incidence of EoE has been increasing over the past 20 years, as have other allergies. Rothenberg and his laboratory team pioneered research showing EoE's reported incidence is estimated to be at least one in 1,000 people. Its hallmark is swelling and inflammation in the esophagus, accompanied by high levels of immune cells called eosinophils.

EoE can affect people of any age, but is more common among young men who have a history of other allergic diseases, such as asthma and eczema. EoE is often first discovered in children with feeding difficulties and failure to thrive, but it is often misunderstood and not well known, delaying proper diagnosis and treatment.

Several organizations provided funding support for the study, which was released online March 3. These include the National Institutes of Health, the Campaign Urging Research for Eosinophilic Disease (CURED), the Food Allergy Initiative (FAI), and the Buckeye Foundation.

Jim Feuer | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>