Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Makeup and Diet Interact with the Microbiome to Impact Health

26.09.2013
A Mayo Clinic researcher, along with his collaborators, has shown that an individual's genomic makeup and diet interact to determine which microbes exist and how they act in the host intestine.

The study was modeled in germ-free knockout mice to mimic a genetic condition that affects 1 in 5 humans and increases the risk for digestive diseases. The findings appear in the Proceedings of the National Academy of Sciences.

"Our data show that factors in the differences in a host's genetic makeup — in this case genes that affect carbohydrates in the gut — interact with the type of food eaten. That combination determines the composition and function of resident microbes," says Purna Kashyap, M.B.B.S., a Mayo Clinic gastroenterologist and first author of the study. He is also a collaborator in the Microbiome Program of the Mayo Clinic Center for Individualized Medicine.

Significance of the Findings
Roughly 20 percent of humans lack the gene that encodes proteins for processing a specific carbohydrate, a sugar in the intestinal mucus called fucose. The interaction shown by the research team is valuable because many bacteria are adept at utilizing carbohydrates such as fucose, which are abundant in the gut. Confronted with diets that have little or no complex plant sugars, these bacteria are forced to change their function, especially in hosts that lack fucose. This was seen with the altered metabolic gene expression of one of the key microbes in the gut — Bacteroides thetaiotaomicron. Changes in microbial membership or function as demonstrated in this study may, in turn, foster a "digestive landscape" that can promote inflammatory conditions such as Crohn's disease.

The microbiome represents millions of microbes in the gut and elsewhere in the body. They perform specialized functions to help keep metabolism in balance. Whether in humans or other animals, the microbial combination is unique and must function well with the individual's genome and diet for a healthy existence.

Additional researchers on the study include Angela Marcobal, Ph.D.; Samuel Smits; Erica Sonnenburg, Ph.D.; Elizabeth Costello, Ph.D.; Steven Higginbottom; Susan Holmes, Ph.D.; David Relman, M.D.; and Justin Sonnenburg, Ph.D.; all of Stanford University; Luke Ursell, University of Colorado at Boulder; Rob Knight, Ph.D., Howard Hughes Medical Institute and University of Colorado at Boulder; Steve Domino, M.D., Ph.D., University of Michigan; and Jeffrey Gordon, M.D., Washington University.

The research was supported by the National Institutes of Health, the Crohn's & Colitis Foundation of America, the Walter and Idun Berry Foundation, and the Thomas and Joan Merigan Endowment at Stanford.

About Mayo Clinic

Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit MayoClinic.com or MayoClinic.org/news.

Journalists can become a member of the Mayo Clinic News Network for the latest health, science and research news and access to video, audio, text and graphic elements that can be downloaded or embedded.

Media Contact
Robert Nellis
507-284-5005 (days)
507-284-2511 (evenings)
newsbureau@mayo.edu

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>