Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Makeup and Diet Interact with the Microbiome to Impact Health

26.09.2013
A Mayo Clinic researcher, along with his collaborators, has shown that an individual's genomic makeup and diet interact to determine which microbes exist and how they act in the host intestine.

The study was modeled in germ-free knockout mice to mimic a genetic condition that affects 1 in 5 humans and increases the risk for digestive diseases. The findings appear in the Proceedings of the National Academy of Sciences.

"Our data show that factors in the differences in a host's genetic makeup — in this case genes that affect carbohydrates in the gut — interact with the type of food eaten. That combination determines the composition and function of resident microbes," says Purna Kashyap, M.B.B.S., a Mayo Clinic gastroenterologist and first author of the study. He is also a collaborator in the Microbiome Program of the Mayo Clinic Center for Individualized Medicine.

Significance of the Findings
Roughly 20 percent of humans lack the gene that encodes proteins for processing a specific carbohydrate, a sugar in the intestinal mucus called fucose. The interaction shown by the research team is valuable because many bacteria are adept at utilizing carbohydrates such as fucose, which are abundant in the gut. Confronted with diets that have little or no complex plant sugars, these bacteria are forced to change their function, especially in hosts that lack fucose. This was seen with the altered metabolic gene expression of one of the key microbes in the gut — Bacteroides thetaiotaomicron. Changes in microbial membership or function as demonstrated in this study may, in turn, foster a "digestive landscape" that can promote inflammatory conditions such as Crohn's disease.

The microbiome represents millions of microbes in the gut and elsewhere in the body. They perform specialized functions to help keep metabolism in balance. Whether in humans or other animals, the microbial combination is unique and must function well with the individual's genome and diet for a healthy existence.

Additional researchers on the study include Angela Marcobal, Ph.D.; Samuel Smits; Erica Sonnenburg, Ph.D.; Elizabeth Costello, Ph.D.; Steven Higginbottom; Susan Holmes, Ph.D.; David Relman, M.D.; and Justin Sonnenburg, Ph.D.; all of Stanford University; Luke Ursell, University of Colorado at Boulder; Rob Knight, Ph.D., Howard Hughes Medical Institute and University of Colorado at Boulder; Steve Domino, M.D., Ph.D., University of Michigan; and Jeffrey Gordon, M.D., Washington University.

The research was supported by the National Institutes of Health, the Crohn's & Colitis Foundation of America, the Walter and Idun Berry Foundation, and the Thomas and Joan Merigan Endowment at Stanford.

About Mayo Clinic

Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit MayoClinic.com or MayoClinic.org/news.

Journalists can become a member of the Mayo Clinic News Network for the latest health, science and research news and access to video, audio, text and graphic elements that can be downloaded or embedded.

Media Contact
Robert Nellis
507-284-5005 (days)
507-284-2511 (evenings)
newsbureau@mayo.edu

Bob Nellis | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>