Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next-generation sequencing technology for medicine and research in Mainz

09.06.2010
Mainz’s Center for Translational Oncology and Immunology (TrOn) has received one of the world's first Illumina HiSeq genome sequencers

A next generation genome sequencer has been received in the newly launched Center for Translational Oncology Mainz and Immunology (TrOn) in Mainz. With the Illumina HiSeq 2000 instrument, the genetic material of cells can be completely decoded within a few days.

"The performance of TrOn as an innovation center and hub of the CI3 regional network of science and business is strengthened by this technology. This is therefore another important step to make Mainz a globally competitive center for personalized medicine," says Univ.-Prof. Dr. Ugur Sahin, director of TrOn. “The new technology allows us to examine the genetic information in tumor and immune cells quickly and inexpensively in order to gain a better understanding of the interplay of cancer treatment and immune system. This is necessary to develop customized therapies for individual patients."

"The new instrument is eight times more powerful than previous methods," says Dr. John Castle, head of Bioinformatics/Genomics at TrOn. "This represents not only a significant reduction of time and costs, but also more information that must be analyzed. For this, we are well positioned by our cooperation with the University of Mainz Center for High Performance Computing (ZDV)."

Understanding the characteristics of individual cancer patients is the basis for a customized treatment and thus critical to a successful therapy. "Individualized" and targeted medicine offers a great promise to significantly improve cancer therapy, both decreasing the cost of health care and improving patient lives. The dramatically increased ability to decode genomes ushered in by this next era of DNA sequencing makes the vision possible.

University President Univ.-Prof. Dr. Georg Krausch, a member of the successful Mainz "City of Science 2011" team, commented: "This is one of the puzzle pieces which we want at our site: cutting-edge research to resolve major social challenges."

Press contact
Christine Castle
CIMT Communications
TrOn - Translationale Onkologie gGmbH
Phone: +49 (0) 6131/17-8025
E-Mail: christine.castle@tron-mainz.de
Internet: http://www.tron-mainz.de
About the Center for Translational Oncology and Immunology (TrOn)
The Center for Translational Oncology and Immunology (TrOn) was founded in February 2010. Its partners include the state of Rhineland-Palatinate, the Johannes Gutenberg-University Mainz and the University Medical Center Mainz. The mission of the TrOn, under the direction of Univ.-Prof. Dr. Ugur Sahin, is to advance medical and scientific discoveries from research to patient treatment.
About the CI3-cluster
The cluster for Individualized Immune Intervention (CI3) is a regional network of science and industry, including three universities, six colleges, two Max Planck Institutes, the Paul-Ehrlich-Institute, the Association for Cancer Immunotherapy (CIMT), the European Business School, the Center for Translational Immunology and Oncology (TrOn), four large pharmaceutical companies and more than 180 small and medium-sized companies from biotechnology and health care. The network focuses on immunotherapy, the fastest growing pharmaceutical market segment, with the mission to turn the Rhine-Main region into a European immunotherapy center.

Caroline Bahnemann | idw
Further information:
http://www.tron-mainz.de
http://www.unimedizin-mainz.de/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>