Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Second-generation drug used for hypertension aids heart function independent of blood pressure

Results of study using animal model among the presentations at the meeting Experimental Biology 2012

Heart failure is the most common cause of death throughout the world, typically the result of chronic high blood pressure, also known as hypertension. As a result, research efforts have focused on an array of approaches aimed at preventing and treating high blood pressure.

Recently, Japanese researchers examined the utility of an anti-hypertensive drug, moxonidine, which acts on the imidazoline receptors in the cardiovascular center of the brainstem. They found, using an animal model, that the drug can improve heart function and survival independent of its effect on blood pressure. They also found the drug had a favorable effect on oxidative stress, which is related to insulin resistance, the underlying abnormality in diabetes, which is common in people with heart failure.

An abstract presentation about the findings will be offered at the meeting Experimental Biology 2012, being held April 21-25 at the San Diego Convention Center. The study was conducted by Yoshitaka Hirooka, Nobuhiro Honda, Ryuichi Matsukawa, Koji Itou and Kenji Sunagawa, all of the Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences in Fukuoka, Japan. It is entitled, "Central sympathoinibition improves left ventricular function during the transition from hypertrophy to heart failure in Dahl salt-sensitive rats." The abstract is sponsored by the American Society for Investigative Pathology (ASIP), one of six scientific societies sponsoring the conference which last year attracted some 14,000 attendees.

Heart failure is a chronic disease that takes many forms and a variety of medications are used to treat it. Drugs such as ACE inhibitors and beta blockers target the causes of systolic heart failure. Clonidine, a first-generation central sympathoinhibitory drug, targets brain receptors that reduce cardiac output and lower blood pressure. Moxonidine, a second-generation drug, targets diastolic heart failure and function by reducing the effect of the central nervous system (CNS) receptors to decrease sympathetic activation and thus reduce blood pressure.

In the study, salt-sensitive, hypertensive rats either received Moxonidine or were assigned to the control group. Researchers later found that the animals who received the drug had a marked inhibition of the sympathetic activity (an area of the brain) compared to those that did not. The findings suggest that inhibition of the central sympathetic outflow is important in the mechanism of hypertension. According to Dr. Hirooka, "The findings are important because they suggest that moxonidine may be useful in targeting the central receptors in the brain that are known to occur in patients with hypertension."

Next Steps

The study is the latest in a series conducted by the research team whose focus is on neural control of circulation in hypertension and heart failure. Looking ahead, they will work to identify the precise mechanisms involved in the beneficial effect of moxonidine, Dr. Hirooka said. They will also study other ways to see if the compound is a possible therapeutic tool for hypertensive heart disease to prevent heart failure. As the drug had beneficial effects on insulin resistance, they would like to further investigate the issue, he added.

Maxonidine is available in select countries in Europe and Asia. It is not currently available in the United States.

About Experimental Biology 2012

Six scientific societies will hold their joint scientific sessions and annual meetings, known as Experimental Biology, from April 21-25, 2012 in San Diego. This meeting brings together the leading researchers from a broad array of life science disciplines. The societies include the American Association of Anatomists (AAA), American Physiological Society (APS), American Society for Biochemistry and Molecular Biology (ASBMB), American Society for Investigative Pathology (ASIP), American Society for Nutrition (ASN), and American Society for Pharmacology and Experimental Therapeutics (ASPET). More information about the meeting can be found online at

About the American Society for Investigative Pathology (ASIP)

The American Society for Investigative Pathology (ASIP) is a society of biomedical scientists who investigate mechanisms of disease. Investigative pathology is an integrative discipline that links the presentation of disease in the whole organism to its fundamental cellular and molecular mechanisms. It uses a variety of structural, functional, and genetic techniques and ultimately applies research findings to the diagnosis and treatment of diseases. ASIP advocates for the practice of investigative pathology and fosters the professional career development and education of its members.

NOTE TO EDITORS: To receive a copy of the abstract or schedule an interview with a member of the research team, please contact Donna Krupa at, 301.634.7209 (office) or 703.967.2751 (cell).

Donna Krupa | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>