Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene variation associated with brain atrophy in mild cognitive impairment

The presence of a gene variant in people with mild cognitive impairment (MCI) is associated with accelerated rates of brain atrophy, according to a new study published online in the journal Radiology.

The study focused on the gene apolipoprotein E (APOE), the most important genetic factor known in non-familial Alzheimer's disease (AD). APOE has different alleles, or gene variations, said the study's senior author, Jeffrey R. Petrella, M.D., associate professor of radiology at Duke University School of Medicine in Durham, N.C.

Medial, inferior, superior, and lateral images of a three-dimensional FreeSurfer reference brain model show regions of accelerated atrophy in the presence of APOE epsilon 4 in subjects with MCI. Effect size of the APOE epsilon 4 acceleration of cortical atrophy is depicted by color: Blue signifies a magnitude of Cohen d value of less than 0.25; yellow, 0.25𔂾.35; and red, more than 0.35. Gray areas were not examined.

Credit: Radiological Society of North America

"We all carry two APOE alleles, and most people have at least one copy of the APOE epsilon 3 (ɛ3) variant, which is considered neutral with respect to Alzheimer's risk," Dr. Petrella said.

The less common epsilon 4 (ɛ4) allele, in contrast, is associated with a higher risk for development of AD, earlier age of onset, and faster progression in those affected, as compared with the other APOE alleles.

Dr. Petrella and colleagues recently analyzed data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) involving 237 patients, mean age 79.9, with MCI, a slight but noticeable decline in cognitive ability that is tied to a higher risk of AD. The researchers used MRI to measure brain atrophy rates in these patients over a 12- to 48-month period.

The ɛ4 carriers in the study group exhibited markedly greater atrophy rates than ɛ3 carriers in 13 of 15 brain regions hypothesized to be key components of the cognitive networks disrupted in AD.

"The results showed atrophy in brain regions we know are affected by AD, in a population of patients who do not have AD, but are at risk for it," Dr. Petrella said. "This suggests the possibility of a genotype-specific network of related brain regions that undergo faster atrophy in MCI and potentially underlies the observed cognitive decline."

The researchers did not explore why APOE ɛ4 might accelerate atrophy, but the affect is likely due to a combination of factors, noted Dr. Petrella.

"The protein has a broad role in the transport and normal metabolism of lipids and a protective function on behalf of brain cells, including its role in the breakdown of beta-amyloid, one of the proteins implicated in the pathophysiology of AD," he said.

With MRI playing an increasingly prominent role in MCI research, Dr. Petrella predicted that increased knowledge about the effects of APOE will improve the design and execution of future clinical trials. For instance, researchers could enrich their samples with å4 patients in MCI prevention trials to better determine potential treatment effects on brain regions vulnerable to degeneration.

The advances in knowledge will also help expand the role of MRI measures in clinical trials investigating novel drugs with potentially disease-modifying capabilities.

"Current FDA-approved drugs treat symptoms, but don't modify the underlying cause of the disease," Dr. Petrella said. "We want to make continued inroads toward the goal of developing and testing drugs that modify the disease process itself."

"Mapping the Effect of the Apolipoprotein E Genotype on 4-Year Atrophy Rates in an Alzheimer's Disease-related Brain Network." Collaborating with Dr. Petrella were Christopher A. Hostage, M.D., Kingshuk Roy Choudhury, Ph.D., and P. Murali Doraiswamy, M.B.B.S., FRCP. For the Alzheimer's Disease Neuroimaging Initiative.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc. (

RSNA is an association of more than 53,000 radiologists, radiation oncologists, medical physicists and related scientists promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill. (

Linda Brooks | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht ARTORG and Inselspital develop artificial pancreas
26.11.2015 | Universitätsspital Bern

nachricht Laboratory study: Scientists from Cologne explore a new approach to prevent newborn epilepsies
24.11.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens helps transform the main wastewater treatment plant in Vienna into a green power plant

30.11.2015 | Power and Electrical Engineering

New Analysis Technique for Chiral Activity in Molecules

30.11.2015 | Life Sciences

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

More VideoLinks >>>