Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy for muscular dystrophy shows promise beyond safety

17.04.2009
Researchers have cleared a safety hurdle in efforts to develop a gene therapy for a form of muscular dystrophy that disables patients by gradually weakening muscles near the hips and shoulders.

Described as the first gene therapy trial in muscular dystrophy demonstrating promising findings, researchers from the University of Florida (UF), Nationwide Children's Hospital in Columbus, Ohio, and The Ohio State University report how they safely transferred a gene to produce a protein necessary for healthy muscle fiber growth into three teenagers with limb-girdle muscular dystrophy.

The findings, which have relevance to genetic disorders beyond muscular dystrophy as well as conditions in which muscles atrophy, were published online today in the Annals of Neurology.

"We think this is an important milestone in establishing the successful use of gene therapy in muscular dystrophy," said Jerry Mendell, MD, director of the Center for Gene Therapy in The Research Institute at Nationwide Children's Hospital and the lead author of the study. "This trial sets the stage for moving forward with treatment for this group of diseases and we are very pleased with these promising initial results. In subsequent steps we plan to deliver the gene through the circulation in hopes of reaching multiple muscles. We also want to extend the trials over longer time periods to be sure of the body's reaction." Mendell is also a professor of Pediatrics and Pathology at The Ohio State University College of Medicine.

Limb-girdle muscular dystrophy actually describes more than 19 disorders that occur because patients have a faulty alpha-sarcoglycan gene. In each of the disorders, the muscle fails to produce a protein essential for muscle fibers to thrive. It can occur in children or adults, and it causes their muscles to get weaker throughout their lifetimes. The trial evaluated the safety of a modified adeno-associated virus — an apparently harmless virus known as AAV that already exists in most people — as a vector to deliver the alpha-SG gene to muscle tissue.

"The safety data is accumulating because this is the same type of vector that we and other research groups have successfully used in gene therapy trials for other diseases," said Barry Byrne, MD, a UF pediatric cardiologist who is a member of the UF Genetics Institute and director of the Powell Gene Therapy Center. "In this effort, although proof of safety was the main endpoint, the added benefit was that this was an effective gene transfer. Even though we were dealing with a small area of muscle, the effect was long-lasting, and that has never been observed before."

Research subjects received a dose of the gene on one side of the body and saline on the opposite side. Neither the researchers nor the patients knew which of the foot muscles received the actual treatment until the end of the experiment. The volunteers were evaluated at set intervals through 180 days, and therapy effectiveness was measured by assessing alpha-SG protein expression in the muscle, which was four to five times higher than in the muscles that received only the saline. The volunteers encountered no adverse health events, and the transferred genes continued to produce the needed protein for at least six months after treatment.

In addition, scientists actually saw that muscle-fiber size increased in the treated areas, suggesting that it may be possible to combat the so-called "dystrophic process" that causes muscles to waste away during the course of the disease. Beyond muscular dystrophy, the discovery shows muscle tissue can be an effective avenue to deliver therapeutic genes for a variety of muscle disorders, including some that are resistant to treatment, such as inclusion body myositis, and in conditions where muscle is atrophied, such as in cancer and aging.

"These exciting results demonstrate the feasibility of gene therapy to treat limb-girdle muscular dystrophy," said Jane Larkindale, portfolio director with Muscular Dystrophy Association Venture Philanthropy, a program that moves basic research into treatment development. "The lack of adverse events seen in this trial not only supports gene therapy for this disease, but it also supports such therapies for many other diseases."

The research was supported by the Muscular Dystrophy Association and the National Institutes of Health.

Mary Ellen Peacock | EurekAlert!
Further information:
http://www.NationwideChildrens.org

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>