Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Therapy Cures Canines of Inherited Form of Day Blindness

22.04.2010
Veterinary ophthalmology researchers from the University of Pennsylvania have used gene therapy to restore retinal cone function and day vision in two canine models of congenital achromatopsia, also called rod monochromacy or total color blindness.

Achromatopsia is a rare autosomal recessive disorder with an estimated prevalence in human beings of about 1 in 30,000 to 50,000. It primarily affects the function of the cone photoreceptors in the retina and serves as a representative model for other more common inherited retinal disorders affecting cones. Cone function is essential for color vision, central visual acuity and most daily visual activities, which underlines the importance of the newly developed treatment.

The treatment cured younger canines regardless of the mutation that caused their achromatopsia. It was effective for the 33 months of the study and most likely is permanent; however, researchers also observed a reproducible reduction in the cone therapy success rate in dogs treated at 54 weeks of age or older.

The successful therapy in dogs was documented by the restoration of the cone function using electroretinography and by objective measure of day vision behavior. The behavioral results suggest that inner retinal cells and central visual pathways were able to usefully process the input from the recovered cones.

The results represent the second successful cone-directed gene replacement therapy in achromatopsia animal models and the first outside of mouse models. The gene therapy targets mutations of the CNGB3 gene, the most common cause of achromatopsia in humans. Achromatopsia-affected dogs represent the only natural large animal model of CNGB3-achromatopsia.

The results hold promise for future clinical trials of cone-directed gene therapy in achromatopsia and other cone-specific disorders.

“The successful restoration of visual function with recombinant adeno-associated virus-mediated gene replacement therapy has ushered in a new era of retinal therapeutics,” said András M. Komáromy, assistant professor of ophthalmology at the Penn School of Veterinary Medicine and lead author of the study.

Many vision-impairing disorders in humans result from genetic defects, and, to date, mutations have been identified in ~150 genes out of ~200 mapped retinal disease loci. This wealth of genetic information has provided fundamental understanding of the multiple and specialized roles played by photoreceptors and the retinal pigment epithelium in the visual process and how mutations in these genes result in disease. Together with the development of gene-transfer technologies, it is now possible to realistically consider the use of gene therapy to treat these previously untreatable disorders.

The article, available online in advance of its publication in the journal Human Molecular Genetics, was conducted by Komáromy, Jessica S. Rowlan and Gustavo D. Aguirre of the Department of Clinical Studies at Penn Vet; Monique M. Garcia, Asli Kaya and Jacqueline C. Tanaka of Temple University; John J. Alexander of the University of Florida and the University of Alabama; Vince A. Chiodo and William W. Hauswirth of the University of Florida; and Gregory M. Acland of Cornell University.

Research was supported by the National Eye Institute of the National Institutes of Health, the Foundation Fighting Blindness, the Macula Vision Research Foundation, the McCabe Fund, the ONCE International Prize, the Van Sloun Fund for Canine Genetic Research, Hope for Vision and Brittany Rockefeller and family.

Hauswirth and the University of Florida have a financial interest in the use of rAAV therapies and own equity in Applied Genetic Technologies Corp., a company that may commercialize some aspects of this work. The University of Pennsylvania, the University of Florida and Cornell University hold a patent on the described gene-therapy technology.

Note to journalists: Short digital movies of canine subjects with restored day vision are available and may be viewed at the Penn Current, http://www.upenn.edu/pennnews/current/latestnews/042110.html

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>