Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene that controls nerve conduction velocity linked to multiple sclerosis

13.08.2014

Evidence found in both human multiple sclerosis patients and experimental mouse models, according to research published in the American Journal of Pathology

A new study published in The American Journal of Pathology identifies a novel gene that controls nerve conduction velocity. Investigators report that even minor reductions in conduction velocity may aggravate disease in multiple sclerosis (MS) patients and in mice bred for the MS-like condition experimental autoimmune encephalomyelitis (EAE).

A strong tool for investigating the pathophysiology of a complex disease is the identification of underlying genetic controls. Multiple genes have been implicated as contributing to the risk of developing MS. Unlike studies that have focused on genetic regulators of inflammation, autoimmunity, demyelination, and neurodegeneration in MS, this study focused on nerve conduction velocity. Investigators found that polymorphisms of the inositol polyphosphate-4-phosphatase, type II (Inpp4b) gene affect the speed of nerve conduction in both mice with EAE and humans with MS.

"Impairment of nerve conduction is a common feature in neurodegenerative and neuroinflammatory diseases such as MS. Measurement of evoked potentials (whether visual, motor, or sensory) is widely used for diagnosis and recently also as a prognostic marker for MS," says lead investigator Saleh M. Ibrahim, MD, PhD, of the Department of Dermatology, Venereology, and Allergology of the University of Lubeck (Germany).

... more about:
»Elsevier »Health »MS »amino »controls »polymorphisms »sclerosis »strains

Using several genomic approaches, the investigators narrowed their search to the genetic region controlling the enzyme inositol-polyphosphate-4-phosphatase II (INPP4B), the product of which helps to regulate the phosphatidyl inositol signaling pathway. Enzymes in this family are involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival, and intracellular communication.

In one series of experiments, the researchers analyzed the genetic locus EAE31, which previously had been shown to control the latency of motor evoked potentials and clinical onset of EAE in mice. Using advanced techniques including congenic mapping, in silico haplotype analyses (computer simulations), and comparative genomics (from rats, mice and humans), they were able to "finemap" the focus to Inpp4b as the quantitative trait gene for EAE31.

When the investigators analyzed this region in eight different strains of mice, they found they could divide the strains into two groups based on differences in amino acid sequences. The strains with the longer-latency SJL/J allele had the two amino acids (arginine and proline), whereas those with the shorter-latency C57BL/10S allele had others (serine and histidine). "These data suggest that Inpp4b structural polymorphism is associated with the speed of neuronal conduction," comments Dr. Ibrahim.

In another experiment, the scientists compared motor conduction velocity in genetically modified mice with a mutant Inpp4b gene to that of control mice. The nerve conduction in this group was slower than in the control group.

Finally, the investigators studied INPP4B polymorphisms in MS patients. They looked at two cohorts: one from Spain (349 cases and 362 controls) and a second from Germany (562 cases and 3,314 controls). The association between the INPP4B polymorphisms and susceptibility to MS was statistically significant when the cohorts were pooled. However, although the Spanish cohort showed a strong association between INPP4B and MS, the association was weaker in the German cohort. "The exact reason for the diverging effect across these populations remains unresolved," states Dr. Ibrahim.

In an accompanying commentary, Hans Lassmann, MD, of the Center for Brain Research of the Medical University of Vienna (Austria) notes, "This study represents an interesting example of how minor changes in conduction velocity, which do not result in a clinical phenotype in control populations, may aggravate disease in conditions such as EAE or MS."

In other words, impaired nerve conduction may have a greater impact on those with MS compared to healthy individuals. Noting that the study reported no major loss of myelin in animals carrying the mutant allele, Dr. Lassmann comments that it is still unclear which neurobiological mechanisms underlie the INPP4B-associated impaired conduction. One suggestion is that INPP4B may be involved in calcium ion signaling within synapses, affecting neurotransmitter release.

Eileen Leahy | Eurek Alert!
Further information:
http://www.elsevier.com

Further reports about: Elsevier Health MS amino controls polymorphisms sclerosis strains

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>