In a study, published in Science, they have investigated a gene region that contains a particular single nucleotide variant associated with increased risk for developing colorectal and prostate cancers - and found that removing this region caused dramatic resistance to tumor formation.
Genome-wide association studies have revealed genomic regions associated with more than 200 diseases, including heart disease, diabetes and different types of cancer. The unveiled human genetic variation has attracted much attention in both scientific and popular press. However, the mechanisms by which these genomic regions act are not fully understood. One suggestion that has generated considerable interest is the possibility that the risk polymorphisms located far from genes could function as gene regulatory elements or 'switches' that regulate expression of genes.
In the current study, which was conducted in mice, scientists have analyzed one particular single nucleotide variant in a region associated with increased risk for developing colorectal and prostate cancers, but whose mechanism of action has been unclear. Although this variant increases cancer risk only by 20 per cent, it is very common and therefore accounts for more inherited cancer than any other currently known genetic variant or mutation.
The scientists removed the gene region containing the risk variant from the mouse genome, and found that as a result the mice were healthy but displayed a small decrease in the expression of a nearby cancer gene, called MYC. However, when these mice were tested for the ability to form tumours after activation of an oncogenic signal that causes colorectal cancer in humans, they showed dramatic resistance to tumor formation. The removed gene region thus appears to act as an important gene switch promoting cancer, and without it tumors develop much more rarely.
According to the scientists, these results show that although the gene variants - which make individual humans different from each other - in general have a small impact on disease development, the gene switches in which they reside can play a major role.
"Our study also highlights that growth of normal cells and cancer cells is driven by different gene switches, suggesting that further work to find ways to control the activity of such disease-specific switches could lead to novel, highly specific approaches for therapeutic intervention", says Professor Jussi Taipale, who led the study.
The work was supported by the Center for Biosciences at Karolinska Institutet, the Karolinska University Hospital, the Science for Life Laboratory, the Academy of Finland’s Center of Excellence in Cancer Genetics Research, the Swedish Research Council, the Swedish Cancer Foundation, the European Research Council, and the EU FP7 Health project SYSCOL.
Publication: 'Mice Lacking a Myc Enhancer Element that Includes Human SNP rs6983267 Are Resistant to Intestinal Tumors', Sur, I., Hallikas, O., Vähärautio, A., Yan, J., Turunen, M., Enge, M., Taipale, M., Karhu, A., Aaltonen, L. A., and Taipale, J., Science, online 1 November 2012.
Caption: Jussi Taipale, photo credit to Ulf Sirborn.
Katarina Sternudd | idw
Further information:
http://www.vr.se
http://ki.se/pressroom
Further reports about: > Biosciences > Cancer > Karolinska > Nutrition > gene switches > gene variant > prostate cancer > tumor formation
GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University
Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Magnetic nano-imaging on a table top
20.04.2018 | Physics and Astronomy
Start of work for the world's largest electric truck
20.04.2018 | Interdisciplinary Research
Atoms may hum a tune from grand cosmic symphony
20.04.2018 | Physics and Astronomy