Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gastric bypass alters sweet taste function

03.11.2010
Gastric bypass surgery decreases the preference for sweet-tasting substances in obese rats, a study finding that could help in developing safer treatments for the morbidly obese, according to Penn State College of Medicine researchers.

"Roux-en-Y gastric bypass surgery is the most common effective treatment for morbid obesity," said Andras Hajnal, M.D., Ph.D., associate professor, Department of Neural and Behavioral Science and Surgery. "Many patients report altered taste preferences after having the procedure."

This surgery involves the creation of a small gastric pouch and bypassing a portion of the upper small intestine. Unlike other weight-reduction methods, it produces substantial and durable weight loss and significant improvements in obesity-related medical conditions including diabetes.

Study results in obese rats suggest that post-surgery changes in the gastrointestinal anatomy affect change in the brain that relate to taste.

Obese rats given gastric bypass surgery showed a reduced preference for high concentration sucrose water when compared to obese rats that did not have surgery. Researchers observed a similar decrease in preference with other sweet-tasting substances, but not for salty, sour or bitter substances. Researchers observed no change in preference in lean rats that had gastric bypass surgery.

The obese rats used do not have the ability to produce the receptor for feeling satiated shortly after a meal because they lack the gut hormone CCK-1. As a result, these rats consumed larger meals and, over time, became obese and developed type-2 diabetes. Interestingly, previous studies lead by the Penn State investigators found an increased sweet preference in these rats, which is also often seen in people struggling with weight management.

"It appears that an uncontrolled appetite may get further boost from altered taste functions during development of obesity and diabetes," Hajnal said. "How much of this vicious circle is due to changes in the neurons inside the brain, which receive taste sensations from the tongue and report to the higher order motivational brain centers, we don't know."

The researchers recorded the activity of 170 taste-responsive neurons in the brain. These showed a shift in the neurons' firing activity similar to the behavioral response, which was measured in lick rates of the rats within a ten-second time period. Neurons in the obese rats' brain responded more vigorously to higher-concentration sucrose water placed on the tongue when compared to lean rats. These effects were reversed by gastric bypass surgery and matched the response of lean rats -- a preference for lower concentration sucrose.

The rats that had gastric bypass surgery lost weight comparable to humans who received the surgery -- 26 to 30 percent of their weight -- and maintained the loss for a long period of time after surgery. Following surgery, the obese rats also showed a higher tolerance for glucose, indicating improvement in diabetes.

"This supports the applicability of this rat model of Roux-en-Y gastric bypass to humans and also suggests that the observed taste changes following the surgery were not related to 'human factors' such as awareness and compliance to dietary and behavioral interventions," Hajnal said.

The researchers published their findings in the October issue of the "American Journal of Physiology, Gastrointestinal and Liver Physiology." The National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute of General Medical Sciences funded this work.

"These findings confirm obesity-related alterations in taste functions and demonstrate the ability of gastric bypass surgery to alleviate these modifications," Hajnal said. "We do not suggest, however, that the findings reported in this paper are the only neural consequences of gastric bypass surgery related to altered postsurgical food preferences. Nevertheless, understanding the underlying mechanisms by which gastric bypass surgery affects taste may help in identifying therapeutic targets that mimic the beneficial effects of the surgery on appetite control and food choices, without the risks and complications of an invasive surgical procedure."

Further research is needed to determine what causes the neural and behavioral changes, according to Hajnal.

Other members of the research team are Peter Kovacs, Ph.D., Department of Neural and Behavioral Sciences; Tamer Ahmed, M.D. and Katia Meirelles, M.D., Department of Surgery; Christopher J. Lynch, Ph.D., professor, Department of Cellular and Molecular Physiology; and Robert N. Cooney, M.D., Department of Surgery, Upstate Medical University, Syracuse, N.Y.

Matt Solovey | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>