Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Game changer for arthritis and anti-fibrosis drugs

12.11.2012
Discovery shows medications can treat inflammation without increasing risk for infection

In a discovery that can fundamentally change how drugs for arthritis, and potentially many other diseases, are made, University of Utah medical researchers have identified a way to treat inflammation while potentially minimizing a serious side effect of current medications: the increased risk for infection.

These findings provide a new roadmap for making powerful anti-inflammatory medicines that will be safer not only for arthritis patients but also for millions of others with inflammation-associated diseases, such as diabetes, traumatic brain injury, and inflammatory bowel disease, according to cardiologist Dean Y. Li, M.D., Ph.D., the U School of Medicine vice dean for research and HA and Edna Benning endowed professor of medicine who led the study. "This can change the way medication is made," he says. "If we can find a way to replace our most powerful drugs for arthritis, we might be able to develop another way to treat inflammation in other diseases that we've been unable to touch because of the danger of suppressing people's immune systems."

The research, funded by the National Institutes of Health (NIH) and published Sunday, Nov. 11, 2012, Nature online, provides the University the opportunity to explore commercializing the technology either through collaboration outside of the state with pharmaceutical companies or within the state via initiatives such as USTAR. The Utah Legislature established USTAR (Utah Science Technology and Research) initiative in 2006 to promote economic growth and high paying jobs through research at the U of U and Utah State University.

"This is just one example of many scientific opportunities for the University and USTAR to work together to benefit not only millions of patients but build medical innovations in Utah," says Li, who's also director of the U of U Molecular Medicine program.

Two Cellular Pathways

When the body undergoes trauma or gets an infection, it responds by releasing cytokines—proteins that enter cells and unleash a three-pronged attack to kill invading bugs, hype up the immune system, and cause inflammation. While inflammation fights infection, it also produces an undesired side effect by weakening blood vessels, which can lead to swelling in the joints, brain or other areas. Scientists long have believed that cytokines use one cellular pathway in their response to infection, meaning that drugs made to block cytokines from causing inflammation also block the immune system and the ability to kill invading bugs.

In a study with mice, Li and his research colleagues upended the one-pathway belief by showing that cytokines use not one but two cellular pathways to battle infection: one to turn on the immune system and kill intruders and a separate one that destroys the architecture of tissues and organs. Identifying the separate pathway for inflammation has vast potential for developing drugs. "We can selectively block inflammation without making the patient immunosuppressed," Li says. "This rewrites the strategy for today's medicines. We focused the work on arthritis given this is a proven market for drugs that reduce damage from inflammation and fibrosis, but we suspect that many other diseases ranging from fibrosis following heart attacks to inflammatory bowel disease may benefit from such an approach."

Li's discovery has dramatic implications for the field of rheumatology, according to Tracy M. Frech, M.D., U of U assistant professor of internal medicine who specializes in rheumatology. "This may lead to more effective treatments for conditions such as lupus, systemic sclerosis, and the spectrum of inflammatory arthritis, without putting patients at risk for infections," she says. "This phenomenal work is a credit to the strong molecular medicine program here at the University of Utah."

Before a new generation of anti-inflammation drugs can be made, researchers must screen for molecules of chemical compounds that can be turned in pharmaceutical-grade drugs, something the University can and should do, according to Li. This can be accomplished either through collaboration with pharmaceutical companies outside of the state or with sources inside Utah, such as the USTAR initiative.

This study was funded by NIH grants:

#R01HL068873
#R01HL077671
#U54AI065357

Phil Sahm | EurekAlert!
Further information:
http://www.hsc.utah.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>