Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gaining control over drug-seeking behavior in alcohol dependence

29.05.2013
The damaging effects of too much alcohol on the brain are widely known, but often neglected, and poorly understood.

New data provided by the working group “Molecular Psychopharmacology” at the Institute of Psychopharmacology at the Central Institute of Mental Health (ZI) offers a fundamentally new insight into the molecular basis by which repeated alcohol intoxication causes a substantial and long-lasting reorganization of the medial prefrontal cortex, a structure that participates in higher order brain functions, commonly referred to as executive functions.

The working group “Molecular Psychopharmacology”, led by Wolfgang H. Sommer, investigates genetic, neurobiological and behavioral factors contributing to addictive behaviors. In this context the group focuses on long-term consequences of alcohol in the brain, in particular how these affect the prefrontal cortex (PFC). A new paper, published in February by the Journal of Neuroscience, shows that alcohol damages a small sub-region of the PFC called the infralimbic area, but that rats can regain control over pathological alcohol seeking behavior after repairing this functional deficit.

Specifically, the researchers show that a subgroup of PFC neurons is particularly sensitive to the long-term consequences of repeated alcohol intoxications (blood alcohol concentrations > 2.5 g/l, a level that is typically observed in alcoholic patients). These neurons become unable to adequately control the release of their signaling substance glutamate due to a lack of autoreceptor function normally provided by glutamate receptors of the mGluR2 type. Sommer’s team can directly link this loss of function to escalated alcohol seeking because restoring mGluR2 levels in infralimbic projection neurons by focal virus-mediated gene transfer was sufficient to abolish the excessive seeking response completely. The translational value of the findings from experimental animals is supported by data from human postmortem brains showing a reduction in mGluR2 expression in a corresponding PFC region of alcoholics.

These results suggest that mGluR2 loss in rodent and human neural circuits, which provide cortical control over deeper brain structures involved in motivational and emotional regulation, may be a major consequence of alcohol dependence and a key pathophysiological mechanism for the increased propensity to relapse. Given that it seems possible to restore PFC control over drug seeking behavior by repairing mGluR2 autoreceptor function, it now becomes important to understand the molecular mechanism leading to the blockade of receptor expression. Assuming that epigenetic silencing plays role in this process, the working group “Molecular Psychopharmacology” is now aiming to design interventions for removing such epigenetic marks.
Contact:
PD Dr. Wolfgang H Sommer
Group Leader of the Working Group Molecular Psychopharmacology
Institute for Psychopharmacology, Central Institute of Mental Health
phone ++49 (0)621 1703-6286
E-Mail: wolfgang.sommer@zi-mannheim.de

Publication:
Meinhardt MW, Hansson AC, Perreau-Lenz S, Bauder-Wenz C, Stählin O, Heilig M, Harper C, Drescher KU, Spanagel R, Sommer WH. Rescue of infralimbic mGluR2 deficit restores control over drug-seeking behavior in alcohol dependence. J Neurosci. 2013 Feb 13;33(7):2794-806.

doi: 10.1523/JNEUROSCI.4062-12.2013. PMID: 23407939.

Sigrid Wolff | idw
Further information:
http://www.zi-mannheim.de

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>