Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gaining control over drug-seeking behavior in alcohol dependence

The damaging effects of too much alcohol on the brain are widely known, but often neglected, and poorly understood.

New data provided by the working group “Molecular Psychopharmacology” at the Institute of Psychopharmacology at the Central Institute of Mental Health (ZI) offers a fundamentally new insight into the molecular basis by which repeated alcohol intoxication causes a substantial and long-lasting reorganization of the medial prefrontal cortex, a structure that participates in higher order brain functions, commonly referred to as executive functions.

The working group “Molecular Psychopharmacology”, led by Wolfgang H. Sommer, investigates genetic, neurobiological and behavioral factors contributing to addictive behaviors. In this context the group focuses on long-term consequences of alcohol in the brain, in particular how these affect the prefrontal cortex (PFC). A new paper, published in February by the Journal of Neuroscience, shows that alcohol damages a small sub-region of the PFC called the infralimbic area, but that rats can regain control over pathological alcohol seeking behavior after repairing this functional deficit.

Specifically, the researchers show that a subgroup of PFC neurons is particularly sensitive to the long-term consequences of repeated alcohol intoxications (blood alcohol concentrations > 2.5 g/l, a level that is typically observed in alcoholic patients). These neurons become unable to adequately control the release of their signaling substance glutamate due to a lack of autoreceptor function normally provided by glutamate receptors of the mGluR2 type. Sommer’s team can directly link this loss of function to escalated alcohol seeking because restoring mGluR2 levels in infralimbic projection neurons by focal virus-mediated gene transfer was sufficient to abolish the excessive seeking response completely. The translational value of the findings from experimental animals is supported by data from human postmortem brains showing a reduction in mGluR2 expression in a corresponding PFC region of alcoholics.

These results suggest that mGluR2 loss in rodent and human neural circuits, which provide cortical control over deeper brain structures involved in motivational and emotional regulation, may be a major consequence of alcohol dependence and a key pathophysiological mechanism for the increased propensity to relapse. Given that it seems possible to restore PFC control over drug seeking behavior by repairing mGluR2 autoreceptor function, it now becomes important to understand the molecular mechanism leading to the blockade of receptor expression. Assuming that epigenetic silencing plays role in this process, the working group “Molecular Psychopharmacology” is now aiming to design interventions for removing such epigenetic marks.
PD Dr. Wolfgang H Sommer
Group Leader of the Working Group Molecular Psychopharmacology
Institute for Psychopharmacology, Central Institute of Mental Health
phone ++49 (0)621 1703-6286

Meinhardt MW, Hansson AC, Perreau-Lenz S, Bauder-Wenz C, Stählin O, Heilig M, Harper C, Drescher KU, Spanagel R, Sommer WH. Rescue of infralimbic mGluR2 deficit restores control over drug-seeking behavior in alcohol dependence. J Neurosci. 2013 Feb 13;33(7):2794-806.

doi: 10.1523/JNEUROSCI.4062-12.2013. PMID: 23407939.

Sigrid Wolff | idw
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>