Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future surgeons may use robotic nurse, 'gesture recognition'

04.02.2011
Surgeons of the future might use a system that recognizes hand gestures as commands to control a robotic scrub nurse or tell a computer to display medical images of the patient during an operation.

Both the hand-gesture recognition and robotic nurse innovations might help to reduce the length of surgeries and the potential for infection, said Juan Pablo Wachs, an assistant professor of industrial engineering at Purdue University.

The "vision-based hand gesture recognition" technology could have other applications, including the coordination of emergency response activities during disasters.

"It's a concept Tom Cruise demonstrated vividly in the film 'Minority Report,'" Wachs said.

Surgeons routinely need to review medical images and records during surgery, but stepping away from the operating table and touching a keyboard and mouse can delay the surgery and increase the risk of spreading infection-causing bacteria.

The new approach is a system that uses a camera and specialized algorithms to recognize hand gestures as commands to instruct a computer or robot.

At the same time, a robotic scrub nurse represents a potential new tool that might improve operating-room efficiency, Wachs said.

Findings from the research will be detailed in a paper appearing in the February issue of Communications of the ACM, the flagship publication of the Association for Computing Machinery. The paper, featured on the journal's cover, was written by researchers at Purdue, the Naval Postgraduate School in Monterey, Calif., and Ben-Gurion University of the Negev, Israel.

Research into hand-gesture recognition began several years ago in work led by the Washington Hospital Center and Ben-Gurion University, where Wachs was a research fellow and doctoral student, respectively.

He is now working to extend the system's capabilities in research with Purdue's School of Veterinary Medicine and the Department of Speech, Language, and Hearing Sciences.

"One challenge will be to develop the proper shapes of hand poses and the proper hand trajectory movements to reflect and express certain medical functions," Wachs said. "You want to use intuitive and natural gestures for the surgeon, to express medical image navigation activities, but you also need to consider cultural and physical differences between surgeons. They may have different preferences regarding what gestures they may want to use."

Other challenges include providing computers with the ability to understand the context in which gestures are made and to discriminate between intended gestures versus unintended gestures.

"Say the surgeon starts talking to another person in the operating room and makes conversational gestures," Wachs said. "You don't want the robot handing the surgeon a hemostat."

A scrub nurse assists the surgeon and hands the proper surgical instruments to the doctor when needed.

"While it will be very difficult using a robot to achieve the same level of performance as an experienced nurse who has been working with the same surgeon for years, often scrub nurses have had very limited experience with a particular surgeon, maximizing the chances for misunderstandings, delays and sometimes mistakes in the operating room," Wachs said. "In that case, a robotic scrub nurse could be better."

The Purdue researcher has developed a prototype robotic scrub nurse, in work with faculty in the university's School of Veterinary Medicine.

Researchers at other institutions developing robotic scrub nurses have focused on voice recognition. However, little work has been done in the area of gesture recognition, Wachs said.

"Another big difference between our focus and the others is that we are also working on prediction, to anticipate what images the surgeon will need to see next and what instruments will be needed," he said.

Wachs is developing advanced algorithms that isolate the hands and apply "anthropometry," or predicting the position of the hands based on knowledge of where the surgeon's head is. The tracking is achieved through a camera mounted over the screen used for visualization of images.

"Another contribution is that by tracking a surgical instrument inside the patient's body, we can predict the most likely area that the surgeon may want to inspect using the electronic image medical record, and therefore saving browsing time between the images," Wachs said. "This is done using a different sensor mounted over the surgical lights."

The hand-gesture recognition system uses a new type of camera developed by Microsoft, called Kinect, which senses three-dimensional space. The camera is found in new consumer electronics games that can track a person's hands without the use of a wand.

"You just step into the operating room, and automatically your body is mapped in 3-D," he said.

Accuracy and gesture-recognition speed depend on advanced software algorithms.

"Even if you have the best camera, you have to know how to program the camera, how to use the images," Wachs said. "Otherwise, the system will work very slowly."

The research paper defines a set of requirements, including recommendations that the system should:

* Use a small vocabulary of simple, easily recognizable gestures.

* Not require the user to wear special virtual reality gloves or certain types of clothing.

* Be as low-cost as possible.

* Be responsive and able to keep up with the speed of a surgeon's hand gestures.

* Let the user know whether it understands the hand gestures by providing feedback, perhaps just a simple "OK."

* Use gestures that are easy for surgeons to learn, remember and carry out with little physical exertion.

* Be highly accurate in recognizing hand gestures.

* Use intuitive gestures, such as two fingers held apart to mimic a pair of scissors.

* Be able to disregard unintended gestures by the surgeon, perhaps made in conversation with colleagues in the operating room.

* Be able to quickly configure itself to work properly in different operating rooms, under various lighting conditions and other criteria.

"Eventually we also want to integrate voice recognition, but the biggest challenges are in gesture recognition," Wachs said. "Much is already known about voice recognition."

The work is funded by the U.S. Agency for Healthcare Research and Quality. The article is accessible online at http://cacm.acm.org/magazines/2011/2/104397-vision-based-hand-gesture-applications/fulltext

Writer: Emil Venere, 765-494-4709, venere@purdue.edu

Sources: Juan Pablo Wachs, 765 496-7380, jpwachs@purdue.edu
Virginia Gold, ACM Media Contact, 212-626-0505, vgold@acm.org

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>