Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fruit juices contain more vitamin C than their labels indicate

07.10.2009
A team of pharmacists from the University of Santiago de Compostela (USC) has established that the levels of vitamin C in many fruit juices and soft drinks are far higher than those indicated on their labels by the manufacturers. This finding has been possible owing to a new technique developed by the researchers to determine the content of vitamin C in these kinds of drinks.

Ascorbic acid or vitamin C is a natural antioxidant in fruits and vegetables, but the European Commission permits its use as an additive in juices, jams, dairy products and other foods. The involvement of this substance in the immune response and other biochemical processes such as the formation of collagen and the absorption of iron is well-known.

However, high levels of ascorbic acid can cause diarrhoea and gastrointestinal problems, as a result of which scientists are attempting to determine the content of vitamin C in foods with greater and greater accuracy.

Now, a group of researchers from the Faculty of Pharmacy of the USC has developed a new chromatographic technique (these are used to separate and identify chemical elements) aimed at accurately measuring the ascorbic acid in fruit juices and soft drinks. By applying this method, they have found that the amounts of vitamin C stipulated on the labels of many drinks are not real. In a sample of 17 fruit juices, soft drinks and isotonic drinks, only two correspond to what is indicated on the bottle.

Ana Rodríguez Bernaldo de Quirós is a member of the team which has developed the new technique, whose details have recently been published in the Food Chemistry magazine. "The other drinks contain much higher levels than those specified by the manufacturer because, as has already been indicated in a previous study, the label probably only shows the amount of added ascorbic acid, without taking into account the fruit's natural vitamin C content", she explained to SINC.

Bernaldo de Quirós highlights the greater resolution and sensitivity of the method, by means of which it is possible to detect up to 0.01 milligrams of vitamin C per litre, "thanks to the use of new column chromatography, based on spherical particles of ultra pure silica 3 microns in size".

"Another advantage of the method is its simplicity and speed, as the total time taken to carry out the analyses is no more than six minutes", the researcher remarked.

With the new technique, the valuation of the ascorbic acid in the drinks has revealed some curious data. Of the 17 samples analyzed, the one with the highest vitamin C content was an apple juice (840 mg/l), more than the orange juices (352-739 mg/l). The results for the pineapple and grape juices were 702 mg/l and between 30.2 and 261 mg/l for the soft drinks (orange, lemon and apple).

The researchers also evaluated how the vitamin C content of the orange juices and tea drinks varies while they are on the shelves in the temperature conditions specified by the manufacturer. After six days, the former barely lose 8% of their ascorbic acid while, in the tea drinks, this substance falls by 54% at 4ºC and practically disappears at room temperature.

References:

A. Rodríguez-Bernaldo de Quirós, M. Fernández-Arias, J. López-Hernández. "A screening method for the determination of ascorbic acid in fruit juices and soft drinks". Food Chemistry 116 (2): 509-512, 2009.

SINC | EurekAlert!
Further information:
http://www.plataformasinc.es

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>