Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From good to bad with a copper switch

20.10.2015

Here's the mechanism that creates prions, the 'bad' proteins

At the molecular level, the difference between Doctor Jekyll and Mr Hyde lies in a metal, copper. In its physiological form, the prion protein (PrPC ) is 'good' and is involved in normal body processes. It can happen, however, that because of some as yet unknown mechanism, it changes form and turns into a threat for the health of humans and animals (it is responsible for neurodegenerative diseases such as spongiform encephalopathies).


This is a photograph showing how PrPC turns into a Prion.

Credit: SISSA

According to a new SISSA study, the mechanism underlying this change is a metal, copper, or rather a particular region of the protein to which the metal binds, which acts as a sort of 'switch' that turns PrPC into its terrible alter ego.

"We still don't know what complex molecular mechanisms cause the prion protein to become bad," explains Giuseppe Legname, professor at the International School for Advanced Studies (SISSA) in Trieste who coordinated the new study, "nor do we know any treatments to cure prion diseases. Our research has finally uncovered a critical cofactor, which is capable of triggering the transformation of prions proteins from good to bad. And this cofactor is copper which binds to an amino acid sequence of the prion protein, known as 'fifth copper binding site', which has so far been poorly studied".

"In physiological conditions, copper is tightly bound to two histidine amino acids", continues Legname. "When copper is bound in this way it seems to protect the prion protein. When instead copper is missing or is bound to one rather than two histidines, that's when problems arise: the prion protein becomes unstable and turns into a bad and infectious prion".

To reach this conclusion, the researchers used multidisciplinary experimental approaches, ranging from structural to cellular biology. "It all started with an intuition we published in the journal Biochemistry in 2012", explains Gabriele Giachin, first author of the study and former SISSA PhD student (today at the European Synchrotron Radiation Facility, ESRF, in Grenoble, France).

"On that occasion, we hypothesized that the pathological genetic mutations present in the prion protein could affect copper coordination". Starting from this intuition, Giachin and colleagues went on to conduct in-depth experiments using XAFS (X-ray absorption fine structure) spectroscopy, exploiting the powerful X-rays available at the Grenoble synchrotron. Then, drawing on the consolidated expertise in molecular and cellular biology available at the SISSA Laboratory of Prion Biology coordinated by Legname, the group confirmed the hypothesis in living cell systems.

"These results finally answer a fundamental question: what mechanism underlies the appearance of prions?", concludes Legname. "We have been the first to provide a detailed description of the role of copper in prion conversion, opening the way for the development of new drugs targeting this copper binding site, and thus for new potential treatments".

###

The study was conducted through the collaboration of a group of SISSA scientists (in addition to Giachin and Legname, the group includes Thao Mai, Thanh Hoa Tran, Giulia Salzano and Federico Benetti) and a group coordinated by the University of Rome "La Sapienza", led by Paola D'Angelo.

Prion proteins and prions Prions are proteins that have undergone a change in structure from a physiological "good" form normally present in our brain to an aberrant (or "bad") form capable of causing degeneration of nervous tissue and diseases, some of which very severe. Among the diseases are Creutzfeld Jakob disease in humans and "mad cow" disease in cattle. Unique in nature, prions can also be infectious, like viruses and bacteria, in that they can be transmitted between individuals of the same or even different species.

Media Contact

Federica Sgorbissa
pressoffice@sissa.it
39-040-378-7644

 @sissaschool

http://www.sissa.it 

Federica Sgorbissa | EurekAlert!

Further reports about: COPPER SISSA amino cellular biology prion protein prions structure

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>