Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From good to bad with a copper switch

20.10.2015

Here's the mechanism that creates prions, the 'bad' proteins

At the molecular level, the difference between Doctor Jekyll and Mr Hyde lies in a metal, copper. In its physiological form, the prion protein (PrPC ) is 'good' and is involved in normal body processes. It can happen, however, that because of some as yet unknown mechanism, it changes form and turns into a threat for the health of humans and animals (it is responsible for neurodegenerative diseases such as spongiform encephalopathies).


This is a photograph showing how PrPC turns into a Prion.

Credit: SISSA

According to a new SISSA study, the mechanism underlying this change is a metal, copper, or rather a particular region of the protein to which the metal binds, which acts as a sort of 'switch' that turns PrPC into its terrible alter ego.

"We still don't know what complex molecular mechanisms cause the prion protein to become bad," explains Giuseppe Legname, professor at the International School for Advanced Studies (SISSA) in Trieste who coordinated the new study, "nor do we know any treatments to cure prion diseases. Our research has finally uncovered a critical cofactor, which is capable of triggering the transformation of prions proteins from good to bad. And this cofactor is copper which binds to an amino acid sequence of the prion protein, known as 'fifth copper binding site', which has so far been poorly studied".

"In physiological conditions, copper is tightly bound to two histidine amino acids", continues Legname. "When copper is bound in this way it seems to protect the prion protein. When instead copper is missing or is bound to one rather than two histidines, that's when problems arise: the prion protein becomes unstable and turns into a bad and infectious prion".

To reach this conclusion, the researchers used multidisciplinary experimental approaches, ranging from structural to cellular biology. "It all started with an intuition we published in the journal Biochemistry in 2012", explains Gabriele Giachin, first author of the study and former SISSA PhD student (today at the European Synchrotron Radiation Facility, ESRF, in Grenoble, France).

"On that occasion, we hypothesized that the pathological genetic mutations present in the prion protein could affect copper coordination". Starting from this intuition, Giachin and colleagues went on to conduct in-depth experiments using XAFS (X-ray absorption fine structure) spectroscopy, exploiting the powerful X-rays available at the Grenoble synchrotron. Then, drawing on the consolidated expertise in molecular and cellular biology available at the SISSA Laboratory of Prion Biology coordinated by Legname, the group confirmed the hypothesis in living cell systems.

"These results finally answer a fundamental question: what mechanism underlies the appearance of prions?", concludes Legname. "We have been the first to provide a detailed description of the role of copper in prion conversion, opening the way for the development of new drugs targeting this copper binding site, and thus for new potential treatments".

###

The study was conducted through the collaboration of a group of SISSA scientists (in addition to Giachin and Legname, the group includes Thao Mai, Thanh Hoa Tran, Giulia Salzano and Federico Benetti) and a group coordinated by the University of Rome "La Sapienza", led by Paola D'Angelo.

Prion proteins and prions Prions are proteins that have undergone a change in structure from a physiological "good" form normally present in our brain to an aberrant (or "bad") form capable of causing degeneration of nervous tissue and diseases, some of which very severe. Among the diseases are Creutzfeld Jakob disease in humans and "mad cow" disease in cattle. Unique in nature, prions can also be infectious, like viruses and bacteria, in that they can be transmitted between individuals of the same or even different species.

Media Contact

Federica Sgorbissa
pressoffice@sissa.it
39-040-378-7644

 @sissaschool

http://www.sissa.it 

Federica Sgorbissa | EurekAlert!

Further reports about: COPPER SISSA amino cellular biology prion protein prions structure

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>