Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freeze-dried heart valve scaffolds hold promise for heart valve replacement

15.02.2012
The biological scaffold that gives structure to a heart valve after its cellular material has been removed can be freeze-dried and stored for later use as a tissue-engineered replacement valve to treat a failing heart, as described in an article in Tissue Engineering, Part C: Methods, a peer-reviewed journal from Mary Ann Liebert, Inc. (http://www.liebertpub.com). The article is available free online at http://www.liebertpub.com/ten

Shangping Wang and colleagues from Leibniz University, Corlife, and Hannover Medical School, Hannover, Germany, studied various strategies for freeze-drying porcine heart valves. After the cellular material was removed, they freeze-dried the heart valve scaffolds with or without sucrose and hydroxyl ethylene starch, and then compared the stability and elasticity of the freeze-dried scaffolds to assess the effectiveness of these lyoprotectants in preventing degradation of the scaffold. They report their findings in the article "Freeze-dried Heart Valve Scaffolds." (http://online.liebertpub.com/doi/abs/10.1089/ten.TEC.2011.0398)

"Advances in heart valve technology are essential for improvement of patient care," says John Jansen, DDS, PhD, Methods Co-Editor-in-Chief and Professor and Chairman, Department of Biomaterials, Radboud University Nijmegen Medical Center, The Netherlands. "The authors have discerned critical methods for heart valve scaffold preservation that may fundamentally change the way that heart valve reconstruction is performed."

Tissue Engineering is an authoritative peer-reviewed journal published 42 times per year in print and online in three parts: Part A--the flagship journal; Part B—Reviews; and Part C—Methods. Led by Co-Editors-In-Chief Dr. Antonios Mikos, Louis Calder Professor at Rice University, Houston, TX, and Peter C. Johnson, MD, President and CEO, Scintellix, LLC, Raleigh, NC and Vice President, Research and Development, Avery Dennison Medical Solutions, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Tissue Engineering is the Official Journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of contents and sample issues of all 3 parts are available online at http://www.liebertpub.com/ten

Mary Ann Liebert, Inc. is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy and HGT Methods, and Biopreservation and Biobanking. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 70 journals, books, and newsmagazines is available at http://www.liebertpub.com

Mary Ann Liebert, Inc.
140 Huguenot St., New Rochelle, NY 10801-5215
http:// www.liebertpub.com
Phone: 914-740-2100
800-M-LIEBERT
Fax: 914-740-2101

Cathia Falvey | EurekAlert!
Further information:
http://www.liebertpub.com

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>