Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freeze-dried heart valve scaffolds hold promise for heart valve replacement

15.02.2012
The biological scaffold that gives structure to a heart valve after its cellular material has been removed can be freeze-dried and stored for later use as a tissue-engineered replacement valve to treat a failing heart, as described in an article in Tissue Engineering, Part C: Methods, a peer-reviewed journal from Mary Ann Liebert, Inc. (http://www.liebertpub.com). The article is available free online at http://www.liebertpub.com/ten

Shangping Wang and colleagues from Leibniz University, Corlife, and Hannover Medical School, Hannover, Germany, studied various strategies for freeze-drying porcine heart valves. After the cellular material was removed, they freeze-dried the heart valve scaffolds with or without sucrose and hydroxyl ethylene starch, and then compared the stability and elasticity of the freeze-dried scaffolds to assess the effectiveness of these lyoprotectants in preventing degradation of the scaffold. They report their findings in the article "Freeze-dried Heart Valve Scaffolds." (http://online.liebertpub.com/doi/abs/10.1089/ten.TEC.2011.0398)

"Advances in heart valve technology are essential for improvement of patient care," says John Jansen, DDS, PhD, Methods Co-Editor-in-Chief and Professor and Chairman, Department of Biomaterials, Radboud University Nijmegen Medical Center, The Netherlands. "The authors have discerned critical methods for heart valve scaffold preservation that may fundamentally change the way that heart valve reconstruction is performed."

Tissue Engineering is an authoritative peer-reviewed journal published 42 times per year in print and online in three parts: Part A--the flagship journal; Part B—Reviews; and Part C—Methods. Led by Co-Editors-In-Chief Dr. Antonios Mikos, Louis Calder Professor at Rice University, Houston, TX, and Peter C. Johnson, MD, President and CEO, Scintellix, LLC, Raleigh, NC and Vice President, Research and Development, Avery Dennison Medical Solutions, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Tissue Engineering is the Official Journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of contents and sample issues of all 3 parts are available online at http://www.liebertpub.com/ten

Mary Ann Liebert, Inc. is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy and HGT Methods, and Biopreservation and Biobanking. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 70 journals, books, and newsmagazines is available at http://www.liebertpub.com

Mary Ann Liebert, Inc.
140 Huguenot St., New Rochelle, NY 10801-5215
http:// www.liebertpub.com
Phone: 914-740-2100
800-M-LIEBERT
Fax: 914-740-2101

Cathia Falvey | EurekAlert!
Further information:
http://www.liebertpub.com

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>