Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free radicals in cornea may contribute to Fuchs dystrophy, most common cause of corneal transplants

01.02.2011
Discovery holds promise for future treatments

Scientists have found that free radicals (unstable molecules that cause the death of cells as the body ages) may also cause the damage in the eyes of patients with Fuchs Endothelial Corneal Dystrophy (FECD), a hereditary disease that is one of the most common reasons for corneal transplants worldwide.

The finding, published in the November 2010 American Journal of Pathology, holds promise for early and preventative treatments for this disease, which impacts nearly four percent of the population over age 60.

"Our discovery is significant, because it gives us the first hope for slowing the progression of the disease," says Dr. Ula V. Jurkunas, the principal investigator of the study, who is a scientist at Schepens Eye Research Institute and a corneal surgeon at Massachusetts Eye and Ear Infirmary in Boston. "If we can identify how free radicals are involved in this and what antioxidants can fight them, we can create a regimen that can help protect the cornea," she adds. (Antioxidants are molecules such as vitamins or certain proteins that bind with and neutralize free radicals.)

FECD destroys cells in the endothelial or deepest layer of the cornea, which is the clear tissue that makes up the front portion of the eye. These endothelial cells are equipped with pumps that expel excess water from the cornea and keep it clear. Without these cells, the cornea swells and vision clouds, and, in the late stages, vision is completely blocked.

Because corneal endothelial cells do not regenerate themselves, the only effective treatment for Fuchs has been corneal transplant, in which a surgeon removes the injured layer and replaces it with the donor endothelium.

While scientists have made progress in identifying some genes that cause the disease, they have made little or no progress in defining the mechanisms at play.

As a surgeon who performs hundreds of transplants, Jurkunas began to believe that a free radical process might be part of what is happening within the Fuchs dystrophy-plagued cornea. Free radicals are unstable molecules released by the body, which destabilize other molecules through a process known as oxidization, which causes cell death. Antioxidants are known to bind with and neutralize free radicals.

To test the theory, Jurkunas and her colleagues took numerous tissue samples from patients undergoing corneal transplants and tested them for evidence of free radical oxidation and subsequent tissue damage.

In the significant majority of specimens, the scientists found that the level of antioxidants was less than normal (or down-regulated). They also found evidence of high rates of damage to the cells' DNA, which is particularly susceptible to free radicals.

According to Jurkunas, the next step is to identify the specific antioxidants that would neutralize the free radicals involved in the damage and, therefore, could prevent or block their destructive action.

What should patients do in the meantime? While no conclusions should be drawn from these early results, Jurkunas recommends that patients at risk for Fuchs eat a healthy diet rich in leafy green vegetables, such as broccoli and Brussels sprouts, take multivitamins and wear UV protection outdoors.

Other scientists involved in the study are: Dr. Maya S. Bitar, Dr. Toshinari Funaki, and Dr. Behrooz Azizi, also from both Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary.

The study was conducted at Jurkunas' laboratory at Schepens Eye Research Institute. Tissue samples were donated by the surgeons and patients of the Massachusetts Eye and Ear Infirmary and Ophthalmic Consultants of Boston

Schepens Eye Research Institute is an affiliate of Harvard Medical School and the largest independent eye research institute in the nation. For more information about Schepens Eye Research Institute go to Schepens.harvard.edu.

Founded in 1824, Massachusetts Eye and Ear Infirmary is an independent specialty hospital, an international center for treatment and research, and a teaching affiliate of the Harvard Medical School. Information about Massachusetts Eye and Ear Infirmary is available on its website at www.MassEyeAndEar.org.

Patti Jacobs | EurekAlert!
Further information:
http://www.MassEyeAndEar.org
http://Schepens.harvard.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>