Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Force of habit: Stress hormones switch off areas of the brain for goal-directed behaviour

25.07.2012
RUB publication: Combination of two stress hormones is responsible

Cognition psychologists at the Ruhr-Universität together with colleagues from the University Hospital Bergmannsheil (Prof. Dr. Martin Tegenthoff) have discovered why stressed persons are more likely to lapse back into habits than to behave goal-directed.

The team of PD Dr. Lars Schwabe and Prof. Dr. Oliver Wolf from the Institute for Cognitive Neuroscience have mimicked a stress situation in the body using drugs. They then examined the brain activity using functional MRI scanning. The researchers have now reported in the Journal of Neuroscience that the interaction of the stress hormones hydrocortisone and noradrenaline shut down the activity of brain regions for goal-directed behaviour. The brain regions responsible for habitual behaviour remained unaffected.

Two stress hormones in use

In order to test the different stress hormones, the cognition psychologists used three substances - a placebo, the stress hormone hydrocortisone and yohimbine, which ensures that the stress hormone noradrenaline stays active longer. Part of the volunteers received hydrocortisone alone or just yohimbine, others both substances. A fourth group were administered a placebo. Altogether, the data of 69 volunteers was included in the study.
Goal-directed behaviour and habits investigated in the experiment

In the experiment, all participants - both male and female - learned that they would receive cocoa or orange juice as a reward if they chose certain symbols on the computer. After this learning phase, volunteers were allowed to eat as many oranges or as much chocolate pudding as they liked. “That weakens the value of the reward”, explained Schwabe. “Whoever eats chocolate pudding will lose the attraction to cocoa. Whoever is satiated with oranges, has less appetite for orange juice.” In this context, goal-directed behaviour means: Whoever has previously eaten the chocolate pudding, chooses the symbols leading to cocoa reward less frequently. Whoever is satiated with oranges, selects less frequently the symbols associated with orange juice. Based on previous results, the scientists assumed that only the combination of yohimbine and hydrocortisone attenuates goal-directed behaviour. They have now confirmed this hypothesis.

Combined effect of yohimbine and hydrocortisone

As expected, volunteers who took yohimbine and hydrocortisone did not behave goal-directed but according to habit. In other words, satiation with oranges or chocolate pudding had no effect. Persons who had taken a placebo or only one medication, on the other hand, behaved goal-directed and showed a satiating effect. The brain data revealed: The combination of yohimbine and hydrocortisone reduced the activity in the forebrain – in the so-called orbitofrontal and medial prefrontal cortex. These areas have been already previously associated with goal-directed behaviour. The brain regions which are important for habitual learning, on the other hand, were similarly active for all volunteers.

Bibliographic record

L. Schwabe, M. Tegenthoff, O. Höffken, O.Wolf (2012): Simultaneous glucocorticoid and Noradrenergic activity disrupts the neural basis of goal-directed action in the human brain, Journal of Neuroscience, doi: 10.1523/JNEUROSCI.1304-12.2012

Further information

PD Dr. Lars Schwabe, Cognition Psychology, Institute for Cognitive Neuroscience, Faculty for Psychology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-29324
Lars.Schwabe@rub.de

Click for more

Earlier press release on this subject
http://aktuell.ruhr-uni-bochum.de/pm2011/pm00383.html.en

Cognitive Psychology at RUB
http://www.cog.psy.ruhr-uni-bochum.de/index.html

Editor: Dr. Julia Weiler

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>