Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Foot positioning during walking and running may influence ankle sprains

The position of the foot just before ground contact during running and walking may put people at risk for ankle sprains, according to a new study published by a University of Georgia kinesiology researcher.

The results of the study, which appear in the June online edition of the American Journal of Sports Medicine, found that people who have a history of repetitive ankle sprains demonstrated lower clearance heights between their feet and the floor during running, and pointed their toes down more during walking. Ankle sprains are the most common sports-related injury, and many who experience a sprain will go on to develop chronic instability, suffering repeated sprains during their lifetime.

“Almost everyone who is physically active will suffer an ankle sprain at some point,” said the study’s lead author, Cathleen Brown Crowell, an assistant professor in the UGA College of Education’s department of kinesiology. “Many people develop repetitive ankle injuries that are painful, can decrease performance and increase the risk of ankle osteoarthritis. We were able to identify factors in foot positioning prior to contact with the ground that may pre-dispose some people to these repetitive injuries. These findings can help clinicians develop rehabilitation programs that address movements that may have been ignored in the past.”

The study collected data on more than 30 male recreational athletes, some with a history of repetitive ankle sprains and some without. Motion capture equipment analyzed joint movements and forces in the participants during walking and running. This study was unique in that it analyzed all three possible motions of the ankle, and included participants who had different types of ankle instability, explained Brown Crowell.

While such motion capture equipment may not be available for analysis of patients in rehabilitation clinics, the findings can be applied to physically active individuals at any level who sprain their ankles.

“We can apply our findings to clinical practice,” said Brown Crowell. “Our study demonstrates there are differences in movements at the foot and ankle in an injured population, which may respond to rehabilitation interventions beyond typical stretching and strengthening. The next step is to see if targeted interventions, trying to influence how people run and walk, can treat and even prevent ankle sprains.”

Brown Crowell’s article in American Journal of Sports Medicine is available in its entirety at

For more information on the UGA College of Education’s department of kinesiology, see

Cathleen Brown Crowell | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>