Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Foot positioning during walking and running may influence ankle sprains

01.07.2011
The position of the foot just before ground contact during running and walking may put people at risk for ankle sprains, according to a new study published by a University of Georgia kinesiology researcher.

The results of the study, which appear in the June online edition of the American Journal of Sports Medicine, found that people who have a history of repetitive ankle sprains demonstrated lower clearance heights between their feet and the floor during running, and pointed their toes down more during walking. Ankle sprains are the most common sports-related injury, and many who experience a sprain will go on to develop chronic instability, suffering repeated sprains during their lifetime.

“Almost everyone who is physically active will suffer an ankle sprain at some point,” said the study’s lead author, Cathleen Brown Crowell, an assistant professor in the UGA College of Education’s department of kinesiology. “Many people develop repetitive ankle injuries that are painful, can decrease performance and increase the risk of ankle osteoarthritis. We were able to identify factors in foot positioning prior to contact with the ground that may pre-dispose some people to these repetitive injuries. These findings can help clinicians develop rehabilitation programs that address movements that may have been ignored in the past.”

The study collected data on more than 30 male recreational athletes, some with a history of repetitive ankle sprains and some without. Motion capture equipment analyzed joint movements and forces in the participants during walking and running. This study was unique in that it analyzed all three possible motions of the ankle, and included participants who had different types of ankle instability, explained Brown Crowell.

While such motion capture equipment may not be available for analysis of patients in rehabilitation clinics, the findings can be applied to physically active individuals at any level who sprain their ankles.

“We can apply our findings to clinical practice,” said Brown Crowell. “Our study demonstrates there are differences in movements at the foot and ankle in an injured population, which may respond to rehabilitation interventions beyond typical stretching and strengthening. The next step is to see if targeted interventions, trying to influence how people run and walk, can treat and even prevent ankle sprains.”

Brown Crowell’s article in American Journal of Sports Medicine is available in its entirety at

http://ajs.sagepub.com/content/early/2011/06/17/0363546511408872.full.pdf+html.

For more information on the UGA College of Education’s department of kinesiology, see http://www.coe.uga.edu/kinesiology/.

Cathleen Brown Crowell | EurekAlert!
Further information:
http://www.uga.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>