Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Food for Thought: Research on Plant Compound May Help Prevent Nerve-Cell Loss in the Brain

A neuroscientist at the University of South Carolina is conducting research on a compound found in liquorice root that could prevent or slow down the cell death associated with neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases.

Dr. Rosemarie Booze, the Bicentennial Chair Professor in Behavorial Neuroscience in the university’s College of Arts and Sciences, is isolating liquiritigenin -- or LQ, as Booze calls it -- and is testing its neural effects.

LQ is a phytoestrogen, a compound that is found naturally in plants and that mimics the hormone estrogen. Phytoestrogens bind to one of two types of estrogen receptors (ER) -- alpha and beta -- found in cells in the human body, said Booze. Ones that target alpha ¬¬ERs, which are found throughout the body, have demonstrated qualities that may prevent some cancers, including breast, ovary and uterus. Beta ERs, which LQ targets, are found in cells in the brain

“Plants are amazing chemists!” Booze said. “Phytoestrogens are only made by plants, and there are several different ones that target estrogen receptors. We are focusing on the beta compounds for neural effects, and these can be found in liquorice root, soybeans and other plants.”

Booze’s research is funded by a $1.8 million grant from the National Institutes of Health (NIH).

“Alpha and beta estrogen receptors are very close in structure, but beta estrogen receptors are more localized in the brain and have different effects on brain cells,” Booze said. “We know that LQ is the active compound in one traditional Chinese medicine and is used to treat post menopausal women. We’re looking at it for its brain effects.”

Booze said creating synthetic forms of these naturally occurring compounds in plants is difficult to do in a lab.

“They are potent compounds as natural plants,” Booze said.

Alzheimer’s, Parkinson’s and HIV-related dementia are neurodegenerative diseases because they involve the loss of neurons, or brain cells, over time.

“We’re testing the ability of plant-derived phytoestrogens, such as genistein and LQ, to help nerve cells survive in neurodegenerative diseases and keep neurons connected and functional,” she said. “We want to maintain that brain plasticity.”

Booze’s research is the first ever done on LQ and the first to test some of these phytoestrogens in the brain. She and a USC research team are testing the ability of these compounds to help nerve cells survive, and even make new connections, in laboratory petri dishes. This allows them to see which parts of the compound are critical for nerve-cell survival and how these phytoestrogens are different from the actual hormone estrogen.

“LQ absorbs well in the intestines, and it crosses the blood-brain barrier very well,” said Booze. “LQ may be novel in Western cultures, but it has been used in Eastern cultures for a long time.”

Working with Booze on the LQ research are fellow USC neuroscientists Dr. Charles Mactutus, Dr. Michael Aksenov, Dr. Jun Zhu; current graduate students Landhing Moran, Lauren Hord and Sarah Bertrand; and several undergraduates, including Tor Espensen-Sturges, who is testing the LQ as part of her honors thesis.

Booze has been conducting research on the relationship between chemical compounds and the brain for more than 20 years. During that time, her research has received continuous funding from the NIH, totaling more than $17 million to date. A recent NIH grant renewal will extend her funding through 2015.

LQ isn’t Booze’s first foray into phytoestrogen research. She did similar work in isolating estrogen receptor compounds in soybeans. The alpha ER compounds found in soy have shown to help protect against female cancers. Soy is found in cosmetics, as well as in cereals, breads and legumes.

“Instead of putting it on your face, we’re looking to put LQ in the brain,” Booze said.

For her phytoestrogen research, including LQ, Booze works with the Kentucky-based company, Naprogenix, which specializes in the isolating of estrogen receptive compounds in plants such as soybean, bulrush and plantains. She hopes to receive an additional NIH grant that would enable the university to collaborate with Naprogenix and test the phytoestrogen compounds that the company isolates.

“I hope that the compound like LQ, or these other new estrogen receptor beta-targeted compounds, would both prevent and slow neurodegeneration in these devastating diseases,” Booze said. “My father has severe Parkinson’s, so I understand what families go through and how desperate the need is for any neuroprotective therapeutic, and this work with phytoestrogens opens up a whole new era of research for neuroscientists.”

Peggy Binette | Newswise Science News
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>