Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Folic acid deficiency has multigenerational effects

30.09.2013
University of Calgary researchers discover folic acid deficiency in animals can have severe health consequences in grandchildren and great-grandchildren

Researchers from the universities of Calgary and Cambridge, UK, have discovered that a mutation in a gene necessary for the metabolism of folic acid not only impacts immediate offspring but can also have detrimental health effects, such as spina bifida and heart abnormalities, on subsequent generations.

The animal study, published this week in the journal Cell, also sheds light on the molecular mechanism of folic acid (also known as folate) during development.

About one in 1,200 children are born with spina bifida. The detrimental effects of folic acid deficiency during pregnancy on development are well known. As a result Canada, and many other countries, have implemented folate fortification programs which require folic acid to be added to cereal products. The aim has been to reduce the incidence of developmental problems, including spina bifida. However, until now, very little was known about how folic acid deficiency caused the diverse range of health problems in offspring.

"Fortification programs have reduced the risk of health effects but not eliminated them completely," says Dr. Jay Cross, with the faculties of medicine and veterinary medicine. "Based on our research, we now believe that it may take more than one generation to eliminate the health problems caused by folate deficiency. In addition, we need to be thinking not just about our own genes and how they impact our health and development, but also those of our descendents."

Cross, also a member of the Alberta Children's Hospital Research Institute, co-authored the study with Dr. Erica Watson from the University of Cambridge. Watson is a University of Calgary alumna and started the work during her PhD studies with Cross before moving to Cambridge.

Researchers from the university used mice for the study because their folic acid metabolism is very similar to humans. This enabled the researchers to explore how the molecular mechanism of folic acid deficiency impacted development, thereby causing developmental problems.

Dr. Roy Gravel, also a co-author of the study and member of the Alberta Childrens' Hospital Research Institute says this study provides a tremendous opportunity to look at the prevention of diseases like spina bifida. "The work began as a study of a gene called Mtrr in mice. The goal was to shed light on how a mutation in Mtrr would affect folate metabolism. The multigeneral effect we observed was completely unexpected," says Gravel.

The Mtrr gene encodes an enzyme that is key to the metabolism of folic acid and, when mutated, causes similar effects to dietary folic acid deficiency. The researchers found that when either the maternal grandmother or the maternal grandfather had this Mtrr mutation, their genetically normal grandchildren were at risk of a wide spectrum of developmental abnormalities, even if the mutated gene was not inherited through to the next generations.

These developmental abnormalities were also seen in the fourth and fifth generations of mice.

Through a series of experiments, researchers discovered that the developmental abnormalities were not passed down genetically. Instead, the defects were the result of "epigenetic" changes, which had been inherited. Epigenetics is a process which turns genes on and off through chemical modifications to DNA without changing the genetic code itself. Epigenetic inheritance refers to the passing along of these epigenetic marks as cells divide during development. It had been previously thought that epigenetic modifications were, for the most part, 'wiped clean' after each generation.

The researchers hypothesize that, for a yet unknown reason, some of these abnormal epigenetic marks caused by the Mtrr mutation escape this normal erasure and are inherited by the next generation. If the abnormal epigenetic marks that regulate genes important for development are inherited, then these generations may develop abnormalities as a result of the wrong genes being turned on or off.

"There have been several recent studies implicating folate in different types of human diseases, not just developmental abnormalities, and so our work provides insights into potential biochemical mechanism but also adds a layer of complexity in thinking about transgenerational effects of folate," says Cross.

"This was a very complex study and initially controversial for some. As a result, we could not have accomplished this work without key collaborations both here in Calgary and Cambridge."

The research for this study was supported by grants from the Canadian Institutes of Health Research and Alberta Innovates-Health Solutions.

Media Contact

Gloria Visser-Niven
Manager, Marketing & Communications
Faculty of Veterinary Medicine
403.210-6615
403.542-9444
gvissern@ucalgary.ca
About the University of Calgary
The University of Calgary is a leading Canadian university located in the nation's most enterprising city. The university has a clear strategic direction to become one of Canada's top five research universities by 2016, where research and innovative teaching go hand in hand, and where we fully engage the communities we both serve and lead. This strategy is called Eyes High, inspired by the university's Gaelic motto, which translates as 'I will lift up my eyes.'

For more information, visit ucalgary.ca. Stay up to date with University of Calgary news headlines on Twitter @UCalgary and in our media centre at ucalgary.ca/news/media.

Gloria Visser-Niven | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>