Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Folic acid deficiency has multigenerational effects

30.09.2013
University of Calgary researchers discover folic acid deficiency in animals can have severe health consequences in grandchildren and great-grandchildren

Researchers from the universities of Calgary and Cambridge, UK, have discovered that a mutation in a gene necessary for the metabolism of folic acid not only impacts immediate offspring but can also have detrimental health effects, such as spina bifida and heart abnormalities, on subsequent generations.

The animal study, published this week in the journal Cell, also sheds light on the molecular mechanism of folic acid (also known as folate) during development.

About one in 1,200 children are born with spina bifida. The detrimental effects of folic acid deficiency during pregnancy on development are well known. As a result Canada, and many other countries, have implemented folate fortification programs which require folic acid to be added to cereal products. The aim has been to reduce the incidence of developmental problems, including spina bifida. However, until now, very little was known about how folic acid deficiency caused the diverse range of health problems in offspring.

"Fortification programs have reduced the risk of health effects but not eliminated them completely," says Dr. Jay Cross, with the faculties of medicine and veterinary medicine. "Based on our research, we now believe that it may take more than one generation to eliminate the health problems caused by folate deficiency. In addition, we need to be thinking not just about our own genes and how they impact our health and development, but also those of our descendents."

Cross, also a member of the Alberta Children's Hospital Research Institute, co-authored the study with Dr. Erica Watson from the University of Cambridge. Watson is a University of Calgary alumna and started the work during her PhD studies with Cross before moving to Cambridge.

Researchers from the university used mice for the study because their folic acid metabolism is very similar to humans. This enabled the researchers to explore how the molecular mechanism of folic acid deficiency impacted development, thereby causing developmental problems.

Dr. Roy Gravel, also a co-author of the study and member of the Alberta Childrens' Hospital Research Institute says this study provides a tremendous opportunity to look at the prevention of diseases like spina bifida. "The work began as a study of a gene called Mtrr in mice. The goal was to shed light on how a mutation in Mtrr would affect folate metabolism. The multigeneral effect we observed was completely unexpected," says Gravel.

The Mtrr gene encodes an enzyme that is key to the metabolism of folic acid and, when mutated, causes similar effects to dietary folic acid deficiency. The researchers found that when either the maternal grandmother or the maternal grandfather had this Mtrr mutation, their genetically normal grandchildren were at risk of a wide spectrum of developmental abnormalities, even if the mutated gene was not inherited through to the next generations.

These developmental abnormalities were also seen in the fourth and fifth generations of mice.

Through a series of experiments, researchers discovered that the developmental abnormalities were not passed down genetically. Instead, the defects were the result of "epigenetic" changes, which had been inherited. Epigenetics is a process which turns genes on and off through chemical modifications to DNA without changing the genetic code itself. Epigenetic inheritance refers to the passing along of these epigenetic marks as cells divide during development. It had been previously thought that epigenetic modifications were, for the most part, 'wiped clean' after each generation.

The researchers hypothesize that, for a yet unknown reason, some of these abnormal epigenetic marks caused by the Mtrr mutation escape this normal erasure and are inherited by the next generation. If the abnormal epigenetic marks that regulate genes important for development are inherited, then these generations may develop abnormalities as a result of the wrong genes being turned on or off.

"There have been several recent studies implicating folate in different types of human diseases, not just developmental abnormalities, and so our work provides insights into potential biochemical mechanism but also adds a layer of complexity in thinking about transgenerational effects of folate," says Cross.

"This was a very complex study and initially controversial for some. As a result, we could not have accomplished this work without key collaborations both here in Calgary and Cambridge."

The research for this study was supported by grants from the Canadian Institutes of Health Research and Alberta Innovates-Health Solutions.

Media Contact

Gloria Visser-Niven
Manager, Marketing & Communications
Faculty of Veterinary Medicine
403.210-6615
403.542-9444
gvissern@ucalgary.ca
About the University of Calgary
The University of Calgary is a leading Canadian university located in the nation's most enterprising city. The university has a clear strategic direction to become one of Canada's top five research universities by 2016, where research and innovative teaching go hand in hand, and where we fully engage the communities we both serve and lead. This strategy is called Eyes High, inspired by the university's Gaelic motto, which translates as 'I will lift up my eyes.'

For more information, visit ucalgary.ca. Stay up to date with University of Calgary news headlines on Twitter @UCalgary and in our media centre at ucalgary.ca/news/media.

Gloria Visser-Niven | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>