Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Focal therapy offers middle ground for some prostate cancer patients

06.03.2013
Men with low-risk prostate cancer who previously had to choose between aggressive treatment, with the potential for significant side effects, and active surveillance, with the risk of disease progression, may have a new option.

Focal laser ablation uses precisely targeted heat, delivered through a small insertion and guided into the prostate by magnetic resonance imaging, to burn away cancerous cells in the prostate.

A small, phase 1 trial, to published early online in the journal Radiology, found that this approach, designed to treat just the diseased portion of the prostate rather than removing or irradiating the entire gland, is safe and can be performed without the troubling complications associated with more aggressive therapies.

None of the nine men treated in the study had a significant side effect. Six months after therapy, seven of the nine patients (78%) no longer had evidence of cancerous tissue in biopsies of the treated area.

"Focal therapy is the male version of a lumpectomy for breast cancer," said study author Scott Eggener, MD, associate professor of surgery at the University of Chicago Medicine. "Rather than removing the entire organ, we are testing this less-invasive way of destroying just the cancer and leaving healthy tissue in place."

"This experimental approach appears to combine the most attractive element of treatment, eradication of the cancer, with the most appealing element of active surveillance, maintaining quality of life," said Aytekin Oto, MD, professor of radiology and chief of abdominal imaging at the University of Chicago Medicine. "These early safety results are promising, but we definitely need longer-term data."

More than 2 million American men have been diagnosed with prostate cancer. Due to prostate specific antigen testing (PSA), most of these cancers are detected early, long before they cause symptoms. Because this cancer occurs primarily in older men, treatment with radiation or surgery is not always necessary as these are man are much more likely to die from another cause than from prostate cancer.

But many healthy men who are relatively young, with a life expectancy greater than 10 years, are not comfortable deferring treatment of a potentially lethal disease. Surgery and radiation can often cure the cancer, but can cause side effects, such as incontinence, impotence and decreased bowel function.

This study enrolled nine men with biopsy-confirmed, low-risk prostate cancers (Gleason score 6 or 7, less than 12 mm of cancer) with an MRI of the prostate showing a small area of cancer. Patients were treated under conscious sedation while lying in an MRI scanner. After injecting a local anesthetic, the physicians inserted a small catheter across the perineum and used it to guide a tiny optical fiber, the laser and a cooling device into the prostate.

Under MRI guidance, the laser was positioned within the cancer and used to heat the area to a temperature that would kill cancer cells. The team checked the temperatures outside the treatment region every five seconds to protect healthy tissue, especially those near critical structures such as the urethra and rectal wall.

The entire procedure took less than four hours. That decreased to 2.5 hours as the team gained experience. The actual heat treatment averaged 4.3 minutes. All patients left the hospital the same day.

No patient had a major complication or a serious adverse effect. Average scores for urinary or sexual function were not significantly different one, three or six months after treatment. No patient had symptoms of rectal wall damage.

Biopsies of the treated areas six months after the procedure found no evidence of prostate cancer in seven of the nine patients (78%). The other two patients had small (2.5 mm and 1 mm) remaining cancers.

These are preliminary results, the authors caution, following a small number of patients for a short time. It will take much longer follow-up, the authors say, to fully evaluate this approach.

Focal laser ablation is the lastest in a series of efforts to target just the cancer cells and preserve normal areas of prostate. It appears to offer "measurable advantages over other ablative therapies for focal prostate treatment, namely that we can visualize our treatment as it is happening," according to the study authors.

Laser-induced heating can destroy cancer cells with little damage beyond the precisely targeted zone. The approach is well suited for prostate tissue and can be carefully watched in real-time with magnetic resonance imaging, which can also monitor the generation and consequences of the heat treatment.

A phase 2 trial of this procedure, sponsored by the National Institutes of Health, is now underway at the University of Chicago Medicine. The physicians hope to enroll 27 patients. Details are available at the NIH's ClinicalTrials.gov website, identifier: NCT01792024.

The paper, "MR Imaging-guided Focal Laser Ablation for Prostate Cancer: Phase I Trial," appears as an early release in Radiology [doi:10.1148/radiol.13121652]. The study was supported by a research grant from the Partnership for Cures Foundation and by Visualase, the manufacturer of the imaging software and laser ablation tools used in this study. Additional authors include Gregory Karczmar and Walter Stadler of the University of Chicago, and Ila Sethi, Roger McNichols, Karko Ivancevic and Sydeaka Watson of Visualase.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>