Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Focal therapy offers middle ground for some prostate cancer patients

06.03.2013
Men with low-risk prostate cancer who previously had to choose between aggressive treatment, with the potential for significant side effects, and active surveillance, with the risk of disease progression, may have a new option.

Focal laser ablation uses precisely targeted heat, delivered through a small insertion and guided into the prostate by magnetic resonance imaging, to burn away cancerous cells in the prostate.

A small, phase 1 trial, to published early online in the journal Radiology, found that this approach, designed to treat just the diseased portion of the prostate rather than removing or irradiating the entire gland, is safe and can be performed without the troubling complications associated with more aggressive therapies.

None of the nine men treated in the study had a significant side effect. Six months after therapy, seven of the nine patients (78%) no longer had evidence of cancerous tissue in biopsies of the treated area.

"Focal therapy is the male version of a lumpectomy for breast cancer," said study author Scott Eggener, MD, associate professor of surgery at the University of Chicago Medicine. "Rather than removing the entire organ, we are testing this less-invasive way of destroying just the cancer and leaving healthy tissue in place."

"This experimental approach appears to combine the most attractive element of treatment, eradication of the cancer, with the most appealing element of active surveillance, maintaining quality of life," said Aytekin Oto, MD, professor of radiology and chief of abdominal imaging at the University of Chicago Medicine. "These early safety results are promising, but we definitely need longer-term data."

More than 2 million American men have been diagnosed with prostate cancer. Due to prostate specific antigen testing (PSA), most of these cancers are detected early, long before they cause symptoms. Because this cancer occurs primarily in older men, treatment with radiation or surgery is not always necessary as these are man are much more likely to die from another cause than from prostate cancer.

But many healthy men who are relatively young, with a life expectancy greater than 10 years, are not comfortable deferring treatment of a potentially lethal disease. Surgery and radiation can often cure the cancer, but can cause side effects, such as incontinence, impotence and decreased bowel function.

This study enrolled nine men with biopsy-confirmed, low-risk prostate cancers (Gleason score 6 or 7, less than 12 mm of cancer) with an MRI of the prostate showing a small area of cancer. Patients were treated under conscious sedation while lying in an MRI scanner. After injecting a local anesthetic, the physicians inserted a small catheter across the perineum and used it to guide a tiny optical fiber, the laser and a cooling device into the prostate.

Under MRI guidance, the laser was positioned within the cancer and used to heat the area to a temperature that would kill cancer cells. The team checked the temperatures outside the treatment region every five seconds to protect healthy tissue, especially those near critical structures such as the urethra and rectal wall.

The entire procedure took less than four hours. That decreased to 2.5 hours as the team gained experience. The actual heat treatment averaged 4.3 minutes. All patients left the hospital the same day.

No patient had a major complication or a serious adverse effect. Average scores for urinary or sexual function were not significantly different one, three or six months after treatment. No patient had symptoms of rectal wall damage.

Biopsies of the treated areas six months after the procedure found no evidence of prostate cancer in seven of the nine patients (78%). The other two patients had small (2.5 mm and 1 mm) remaining cancers.

These are preliminary results, the authors caution, following a small number of patients for a short time. It will take much longer follow-up, the authors say, to fully evaluate this approach.

Focal laser ablation is the lastest in a series of efforts to target just the cancer cells and preserve normal areas of prostate. It appears to offer "measurable advantages over other ablative therapies for focal prostate treatment, namely that we can visualize our treatment as it is happening," according to the study authors.

Laser-induced heating can destroy cancer cells with little damage beyond the precisely targeted zone. The approach is well suited for prostate tissue and can be carefully watched in real-time with magnetic resonance imaging, which can also monitor the generation and consequences of the heat treatment.

A phase 2 trial of this procedure, sponsored by the National Institutes of Health, is now underway at the University of Chicago Medicine. The physicians hope to enroll 27 patients. Details are available at the NIH's ClinicalTrials.gov website, identifier: NCT01792024.

The paper, "MR Imaging-guided Focal Laser Ablation for Prostate Cancer: Phase I Trial," appears as an early release in Radiology [doi:10.1148/radiol.13121652]. The study was supported by a research grant from the Partnership for Cures Foundation and by Visualase, the manufacturer of the imaging software and laser ablation tools used in this study. Additional authors include Gregory Karczmar and Walter Stadler of the University of Chicago, and Ila Sethi, Roger McNichols, Karko Ivancevic and Sydeaka Watson of Visualase.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>