Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Focal therapy offers middle ground for some prostate cancer patients

06.03.2013
Men with low-risk prostate cancer who previously had to choose between aggressive treatment, with the potential for significant side effects, and active surveillance, with the risk of disease progression, may have a new option.

Focal laser ablation uses precisely targeted heat, delivered through a small insertion and guided into the prostate by magnetic resonance imaging, to burn away cancerous cells in the prostate.

A small, phase 1 trial, to published early online in the journal Radiology, found that this approach, designed to treat just the diseased portion of the prostate rather than removing or irradiating the entire gland, is safe and can be performed without the troubling complications associated with more aggressive therapies.

None of the nine men treated in the study had a significant side effect. Six months after therapy, seven of the nine patients (78%) no longer had evidence of cancerous tissue in biopsies of the treated area.

"Focal therapy is the male version of a lumpectomy for breast cancer," said study author Scott Eggener, MD, associate professor of surgery at the University of Chicago Medicine. "Rather than removing the entire organ, we are testing this less-invasive way of destroying just the cancer and leaving healthy tissue in place."

"This experimental approach appears to combine the most attractive element of treatment, eradication of the cancer, with the most appealing element of active surveillance, maintaining quality of life," said Aytekin Oto, MD, professor of radiology and chief of abdominal imaging at the University of Chicago Medicine. "These early safety results are promising, but we definitely need longer-term data."

More than 2 million American men have been diagnosed with prostate cancer. Due to prostate specific antigen testing (PSA), most of these cancers are detected early, long before they cause symptoms. Because this cancer occurs primarily in older men, treatment with radiation or surgery is not always necessary as these are man are much more likely to die from another cause than from prostate cancer.

But many healthy men who are relatively young, with a life expectancy greater than 10 years, are not comfortable deferring treatment of a potentially lethal disease. Surgery and radiation can often cure the cancer, but can cause side effects, such as incontinence, impotence and decreased bowel function.

This study enrolled nine men with biopsy-confirmed, low-risk prostate cancers (Gleason score 6 or 7, less than 12 mm of cancer) with an MRI of the prostate showing a small area of cancer. Patients were treated under conscious sedation while lying in an MRI scanner. After injecting a local anesthetic, the physicians inserted a small catheter across the perineum and used it to guide a tiny optical fiber, the laser and a cooling device into the prostate.

Under MRI guidance, the laser was positioned within the cancer and used to heat the area to a temperature that would kill cancer cells. The team checked the temperatures outside the treatment region every five seconds to protect healthy tissue, especially those near critical structures such as the urethra and rectal wall.

The entire procedure took less than four hours. That decreased to 2.5 hours as the team gained experience. The actual heat treatment averaged 4.3 minutes. All patients left the hospital the same day.

No patient had a major complication or a serious adverse effect. Average scores for urinary or sexual function were not significantly different one, three or six months after treatment. No patient had symptoms of rectal wall damage.

Biopsies of the treated areas six months after the procedure found no evidence of prostate cancer in seven of the nine patients (78%). The other two patients had small (2.5 mm and 1 mm) remaining cancers.

These are preliminary results, the authors caution, following a small number of patients for a short time. It will take much longer follow-up, the authors say, to fully evaluate this approach.

Focal laser ablation is the lastest in a series of efforts to target just the cancer cells and preserve normal areas of prostate. It appears to offer "measurable advantages over other ablative therapies for focal prostate treatment, namely that we can visualize our treatment as it is happening," according to the study authors.

Laser-induced heating can destroy cancer cells with little damage beyond the precisely targeted zone. The approach is well suited for prostate tissue and can be carefully watched in real-time with magnetic resonance imaging, which can also monitor the generation and consequences of the heat treatment.

A phase 2 trial of this procedure, sponsored by the National Institutes of Health, is now underway at the University of Chicago Medicine. The physicians hope to enroll 27 patients. Details are available at the NIH's ClinicalTrials.gov website, identifier: NCT01792024.

The paper, "MR Imaging-guided Focal Laser Ablation for Prostate Cancer: Phase I Trial," appears as an early release in Radiology [doi:10.1148/radiol.13121652]. The study was supported by a research grant from the Partnership for Cures Foundation and by Visualase, the manufacturer of the imaging software and laser ablation tools used in this study. Additional authors include Gregory Karczmar and Walter Stadler of the University of Chicago, and Ila Sethi, Roger McNichols, Karko Ivancevic and Sydeaka Watson of Visualase.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>