Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going against the flow: Halting atherosclerosis by targeting micro RNA

18.12.2013
Researchers at Emory and Georgia Tech have developed a potential treatment for atherosclerosis that targets a master controller of the process.

The results are scheduled for publication Dec. 18 in the journal Nature Communications.

In a twist, the master controller comes from a source that scientists had thought was leftover garbage. It is a micro RNA molecule, which comes from an unused template that remains after punching out ribosomes –– workhorse protein factories found in all cells.

The treatment works by stopping the inflammatory effects of disturbed blood flow on cells that line blood vessels. In animal models of atherosclerosis, a drug that blocks the micro RNA can stop arteries from becoming blocked, despite the ongoing stress of high-fat diet. The micro RNA appears to function similarly in human cells.

"We've known that aerobic exercise provides protection against atherosclerosis, partly by improving patterns of blood flow. Now we're achieving some insight into how," says senior author Hanjoong Jo, PhD. "Healthy flow tunes down the production of bad actors like this micro RNA. Targeting it could form the basis for a therapeutic approach that could be translated with relative ease compared to other drugs."

Jo is John and Jan Portman professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. The co-first authors of the paper are postdoctoral fellows Dong Ju Son, PhD and Sandeep Kumar, PhD.

In atherosclerosis, arterial walls thicken because of a gradual build-up of white blood cells, lipids and cholesterol. The process can lead to plaque formation, and eventually to heart attacks and strokes.

Atherosclerosis occurs preferentially in branched or curved regions of arteries, because of the patterns of blood flow imposed by the shape of blood vessels. Constant, regular flow of blood appears to promote healthy blood vessels, while erratic or turbulent flow can lead to disease.

Jo and his colleagues have developed an animal model where it is possible to drive the development of atherosclerosis quickly and selectively, by partially restricting blood flow in a mouse's carotid artery. To accelerate the process, the mice also have a deficiency in ApoE, important for removing lipids and cholesterol from the blood, and are fed a high-fat diet. The model allows researchers to compare molecules that are activated in endothelial cells, which line blood vessels, on the disturbed side versus the undisturbed side in the same animal.

Son and Kumar focused on micro RNAs, short snippets of RNA that can inhibit the activity of many genes at once. Micro RNAs were recently discovered to be able to travel from cell to cell, and thus could orchestrate processes such as atherosclerosis. Out of all the micro RNAs the researchers examined, one in particular, called miR-712, was the micro RNA most strongly induced by disturbed blood flow in the atherosclerosis model system.

In response to disturbed or unhealthy blood flow, endothelial cells produce miR-712, the researchers found. miR-712 in turn inhibits a gene called TIMP3, which under healthy flow conditions restrains inflammation in endothelial cells.

The researchers were surprised to find that miR-712 comes from leftovers remaining from a long RNA that is used to form ribosomes. Ribosomes are ubiquitous and perform the basic housekeeping function of protein assembly.

"This is one of the most abundant streams of RNA that cells produce, and it turns out to be the source for a molecule that controls atherosclerosis," Jo says. "Why did nature do it that way? I don't think we know yet."

By using a technology called "locked nucleic acids," Jo and his colleagues tested the effects of blocking miR-712 in the body. When given to mice in the rapid atherosclerosis model, the anti-miR-712 drug inhibited the development of arterial blockages. Without the drug, plaques blocked an average of 80 percent of the disturbed carotid artery, but the drug cut that in half. The drug worked similarly in another model of atherosclerosis where animals develop disease more slowly.

Locked nucleic acids that target an unrelated disease (hepatitis C) are being tested in clinical trials, and so far appear to be effective. A micro RNA similar to miR-712 appears to have the same inflammatory control function in human endothelial cells; it's called miR-205.

Jo says his team is devising ways using nanotechnologies to deliver anti-miR-712 drugs to the heart or to endothelial cells specifically to achieve efficient therapeutic effect with minimum side-effects.

"It is notable that in our experiments, the anti-miR-712 drug was delivered systemically, but still made its way to the right place and had a strong effect," Jo says. "This is a good sign for future translational studies."

The research was supported by the National Heart Lung and Blood Institute (HL095070, HL70531), the Center for Translational Cardiovascular Nanomedicine (HHSN268201000043C), the American Heart Association and the South Korean Ministry of Science, Technology and Education.

Quinn Eastman | EurekAlert!
Further information:
http://www.emory.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>