Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish protein link to controlling high blood pressure

24.06.2009
Research investigates promising alternatives to tackle chronic illnesses

Medical scientists at the University of Leicester are investigating how a species of fish from the Pacific Ocean could help provide answers to tackling chronic conditions such as hereditary high blood pressure and kidney disease.

They are examining whether the Goby fish can help researchers locate genes linked to high blood pressure. This is because a protein called Urotensin II, first identified in the fish, is important for regulating blood pressure in all vertebrates- from fish to humans.

The study is being carried out in the University's Department of Cardiovascular Sciences. Researcher Dr Radoslaw Debiec said: "The protein found in the fish has remained almost unaltered during evolution.

"This indicates that the protein might be of critical importance in regulation of blood pressure and understanding the genetic background of high blood pressure.

"Uncovering the genetic causes of high blood pressure may help in its better prediction and early prevention of its complications. My research at the University of Leicester has shown how variation in the gene encoding the protein may influence risk of hypertension."

Dr Debiec will be presenting his research at the Festival of Postgraduate Research which is taking place on Thursday 25th June in the Belvoir Suite, Charles Wilson Building at the University of Leicester between 11.30am and 1pm.

He added: "Drugs affecting the protein might be a novel alternative to the available therapies in particular in those patients who have chronic kidney disease coexisting with high blood pressure.

"Analysis of large cohort of families has provided us with evidence that genetic information encrypted in the protein travels together with the risk of high blood pressure across generations. Furthermore, the same genetic variant responsible for elevated blood pressure is responsible for the development of chronic kidney disease in this group of patients.

"The present findings may have an impact on the development of new blood pressure-lowering medications."

Dr Debiec's study was supervised Dr. M. Tomaszewski (Department of Cardiovascular Sciences, Cardiology Group,) and Professor D.G. Lambert (Department of Cardiovascular Sciences; Pharmacology and Therapeutics Group).

Radoslaw Debiec | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>