Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish protein link to controlling high blood pressure

24.06.2009
Research investigates promising alternatives to tackle chronic illnesses

Medical scientists at the University of Leicester are investigating how a species of fish from the Pacific Ocean could help provide answers to tackling chronic conditions such as hereditary high blood pressure and kidney disease.

They are examining whether the Goby fish can help researchers locate genes linked to high blood pressure. This is because a protein called Urotensin II, first identified in the fish, is important for regulating blood pressure in all vertebrates- from fish to humans.

The study is being carried out in the University's Department of Cardiovascular Sciences. Researcher Dr Radoslaw Debiec said: "The protein found in the fish has remained almost unaltered during evolution.

"This indicates that the protein might be of critical importance in regulation of blood pressure and understanding the genetic background of high blood pressure.

"Uncovering the genetic causes of high blood pressure may help in its better prediction and early prevention of its complications. My research at the University of Leicester has shown how variation in the gene encoding the protein may influence risk of hypertension."

Dr Debiec will be presenting his research at the Festival of Postgraduate Research which is taking place on Thursday 25th June in the Belvoir Suite, Charles Wilson Building at the University of Leicester between 11.30am and 1pm.

He added: "Drugs affecting the protein might be a novel alternative to the available therapies in particular in those patients who have chronic kidney disease coexisting with high blood pressure.

"Analysis of large cohort of families has provided us with evidence that genetic information encrypted in the protein travels together with the risk of high blood pressure across generations. Furthermore, the same genetic variant responsible for elevated blood pressure is responsible for the development of chronic kidney disease in this group of patients.

"The present findings may have an impact on the development of new blood pressure-lowering medications."

Dr Debiec's study was supervised Dr. M. Tomaszewski (Department of Cardiovascular Sciences, Cardiology Group,) and Professor D.G. Lambert (Department of Cardiovascular Sciences; Pharmacology and Therapeutics Group).

Radoslaw Debiec | EurekAlert!
Further information:
http://www.le.ac.uk

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>