Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First mouse model for ALS dementia

25.09.2014

Now scientists can directly view drugs' effect on brain

The first animal model for ALS dementia, a form of ALS that also damages the brain, has been developed by Northwestern Medicine® scientists. The advance will allow researchers to directly see the brains of living mice, under anesthesia, at the microscopic level. This will allow direct monitoring of test drugs to determine if they work.

This is one of the latest research findings since the ALS Ice Bucket Challenge heightened interest in the disease and the need for expanded research and funding.

"This new model will allow rapid testing and direct monitoring of drugs in real time," said Northwestern scientist and study senior author Teepu Siddique, M.D. "This will allow scientists to move quickly and accelerate the testing of drug therapies."

The new mouse model has the pathological hallmarks of the disease in humans with mutations in the genes for UBQLN2 (ubliqulin 2) and SQSTM1 (P62) that Siddique and colleagues identified in 2011. That pathology was linked to all forms of ALS and ALS/dementia.

Siddique and Han-Xiang Deng, M.D., the corresponding authors on the paper, said they have reproduced behavioral, neurophysiological and pathological changes in a mouse that mimic this form of dementia associated with ALS (amyotrophic lateral sclerosis).

Siddique is the Les Turner ALS Foundation/Herbert C. Wenske Professor of neurology at Northwestern University Feinberg School of Medicine and a neurologist at Northwestern Memorial Hospital. Deng is a research professor in neurology at Feinberg.

The study was published Sept. 22 in the Proceedings of the National Academy of Sciences.

It's been difficult for scientists to reproduce the genetic mutations of ALS, especially ALS/dementia in animal models, Siddique noted, which has hampered drug therapy testing.

Five percent or more of ALS cases, also known as Lou Gehrig's Disease, also have ALS/dementia.

"ALS with dementia is an even more vicious disease than ALS alone because it attacks the brain causing changes in behavior and language well as paralysis," Siddique said.

ALS affects an estimated 350,000 people worldwide, with an average survival of three years. In this progressive neurological disorder, the degeneration of neurons leads to muscle weakness and impaired speaking, swallowing and breathing, eventually causing paralysis and death. The associated dementia affects behavior and may affect decision-making, judgment, insight and language.

###

Other Northwestern authors on the paper include first authors George H. Gorrie, Faisal Fecto, Daniel Radzicki, Craig Weiss, Yong Shi, Hongxin Dong, Hong Zhai, Ronggen Fu, Erdong Liu, Sisi Li, Hasan Arrat, Eileen H. Bigio, John F. Disterhoft, Marco Martina and Enrico Mugnaini. Gorrie is now a consultant neurologist in Scotland.

The study was supported by the National Institute of Neurological Disorders and Stroke grants NS050641, NS078504, NS070142, NS081474, NS064091, NS009904, NS078287, and the National Institute on Aging grants AG20506 and AG13854, both of the National Institutes of Health, the Les Turner ALS Foundation, the Vena E. Schaff ALS Research Fund, a Harold Post Research Professorship, the Herbert and Florence C. Wenske Foundation and the Les Turner ALS Foundation/Herbert C. Wenske Foundation Professorship and others.

marla Paul | Eurek Alert!
Further information:
http://www.northwestern.edu/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>