Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finicky Fat

30.08.2010
Ever wonder why men and women gain weight in different areas of the body? Researchers are coming close to understanding the vital sex differences in men and women concerning fat storage. In fact, research indicates that fat is genetically different in men and women.

A groundbreaking medical study from members of the SWHR-Isis Fund Network on Sex Differences and Metabolism sponsored by the Society for Women’s Health Research (SWHR), the nation’s leading advocate for the study of sex differences, uncovers new truths about fat deposition in male and female mice.

"Given the difference in gene expression profiles, a female fat tissue won't behave anything like a male fat tissue and vice versa," said Deborah Clegg, Ph.D., assistant professor of internal medicine at UT Southwestern Medical Center. "The notion that fat cells between males and females are alike is inconsistent with our findings."

Mice store their fat similar to humans in a sexually dimorphic pattern. Just like human males, male mice store their fat in the belly and midsection area while females store fat in their hips, thighs and buttocks. Fat around your central organs (also known as central adiposity) is the type that is most dangerous for subsequent development of chronic diseases.

Dr. Clegg, the senior author of the study appearing in the International Journal of Obesity, was surprised by the findings. “We found that out of about 40,000 mouse genes, only 138 are commonly found in both male and female fat cells,” said Dr. Clegg. “This was completely unexpected. We expected the exact opposite - that 138 would be different and the rest would be the same between the sexes.”

This news is especially helpful in determining the underlying causes of obesity-related diseases. Since men are more likely to carry extra weight around their bellies, they are at higher risk for numerous obesity-related diseases including diabetes and heart disease. Women, on the other hand, are usually protected from these disorders until menopause, when their ovarian hormone levels drop and fat storage tends to shift from their buttocks to their waists.

“The research being performed by Dr. Clegg and colleagues underscores the importance of understanding the differences in fat deposition in men and women,” said Viviana Simon, Ph.D., SWHR vice president of scientific affairs. “The ability to manipulate how and where in the body fat is deposited holds the promise of helping researchers develop strategies to prevent or delay the development of chronic conditions such as diabetes and cardiovascular disease.”

For more information on the Society for Women’s Health Research please contact Rachel Griffith at 202-496-5001 or Rachel@swhr.org.

The Society for Women’s Health Research (SWHR), a national non-profit organization based in Washington D.C., is widely recognized as the thought leader in women’s health research, particularly how sex differences impact health. SWHR’s mission is to improve the health of all women through advocacy, education and research. Visit SWHR’s website at swhr.org for more information.

Rachel Griffith | Newswise Science News
Further information:
http://www.swhr.org

Further reports about: SWHR chronic condition chronic disease fat cells fat tissue health services

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>