Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fine-tuning the flu vaccine for broader protection

09.08.2011
Study reveals features of influenza virus and our response to it that could reduce the need for annual vaccinations

An antibody that mimics features of the influenza virus's entry point into human cells could help researchers understand how to fine-tune the flu vaccine to protect against a broad range of virus strains. Such protection could potentially reduce the need to develop, produce, and distribute a new vaccine for each flu season.

A multi-institutional team led by Stephen C. Harrison, PhD, chief of the Division of Molecular Medicine at Children's Hospital Boston, report their work and its implications for improving influenza vaccination this week in the Early Edition of the Proceedings of the National Academy of Sciences.

With each passing season, the two primary components of the influenza virus's outer coat, neuraminidase and hemagglutinin (the annual flu vaccine's primary target), mutate, allowing the virus to dodge any anti-flu immunity an individual may have generated in previous years. This evasion strategy, called antigenic drift, is why a new flu vaccine is necessary every year, a process that can take upwards of seven months.

From a public health perspective, an ideal influenza vaccine would protect against multiple strains of the virus, regardless of their hemagglutinin structure. The antibody, discovered by Harrison's collaborators at Duke University Medical Center and called CH65, gives new insights into how the immune system's response to hemagglutinin evolves over time, knowledge that could guide the development of just such a vaccine.

The researchers started with cells donated by an individual who received the flu vaccine for 2007. From those cells, they used genomic tools to generate a suite of antibodies, including CH65, that bound to and neutralized hemagglutinin from several seasonal flu strains. CH65 alone could bind to and neutralize hemagglutinin from 30 of the 36 strains tested.

"While it's unusual to find such broadly effective antibodies to the flu virus, they may actually be more common than we realize," noted Harrison, who is also an investigator with the Howard Hughes Medical Institute. "What this tells us is that the human immune system can fine-tune its response to the flu and actually produce, albeit at a low frequency, antibodies that neutralize a whole series of strains."

CH65 mimics many key aspects of sialic acid, hemagglutinin's natural receptor, and binds to portions of hemagglutinin that the virus cannot mutate without reducing its ability to infect human cells. After comparing CH65 with other antibodies produced from the donor's cells, the team was able to deduce how the donor's anti-flu immune response had evolved to produce such broadly reactive antibodies as a consequence of multiple virus exposures over time.

With this knowledge, Harrison believes it may be possible to develop vaccines that actively direct the immune response to provide broad protection against multiple strains of the influenza virus, ideally by targeting the same portions of hemagglutinin as CH65.

"Developing a flu vaccine is currently a hit-or-miss enterprise," according to Harrison. "We vaccinate with a virus or part of a virus and hope that the immune response will evolve in a useful direction.

But for viruses like influenza that mutate rapidly," he continued, "we want to have a response that does a really good job at blocking both the strain of the virus in the vaccine and many related strains as well. These results point out what strategies we might employ to achieve that goal."

This study was supported by the Howard Hughes Medical Institute, the US Department of Energy, and the National Center for Research Resources and National Institute of Allergy and Infectious Diseases of the National Institutes of Health.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 12 members of the Institute of Medicine and 13 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 395 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Children's visit the Vector blog.

Children's Hospital Boston | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>