Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fine-tuning the flu vaccine for broader protection

09.08.2011
Study reveals features of influenza virus and our response to it that could reduce the need for annual vaccinations

An antibody that mimics features of the influenza virus's entry point into human cells could help researchers understand how to fine-tune the flu vaccine to protect against a broad range of virus strains. Such protection could potentially reduce the need to develop, produce, and distribute a new vaccine for each flu season.

A multi-institutional team led by Stephen C. Harrison, PhD, chief of the Division of Molecular Medicine at Children's Hospital Boston, report their work and its implications for improving influenza vaccination this week in the Early Edition of the Proceedings of the National Academy of Sciences.

With each passing season, the two primary components of the influenza virus's outer coat, neuraminidase and hemagglutinin (the annual flu vaccine's primary target), mutate, allowing the virus to dodge any anti-flu immunity an individual may have generated in previous years. This evasion strategy, called antigenic drift, is why a new flu vaccine is necessary every year, a process that can take upwards of seven months.

From a public health perspective, an ideal influenza vaccine would protect against multiple strains of the virus, regardless of their hemagglutinin structure. The antibody, discovered by Harrison's collaborators at Duke University Medical Center and called CH65, gives new insights into how the immune system's response to hemagglutinin evolves over time, knowledge that could guide the development of just such a vaccine.

The researchers started with cells donated by an individual who received the flu vaccine for 2007. From those cells, they used genomic tools to generate a suite of antibodies, including CH65, that bound to and neutralized hemagglutinin from several seasonal flu strains. CH65 alone could bind to and neutralize hemagglutinin from 30 of the 36 strains tested.

"While it's unusual to find such broadly effective antibodies to the flu virus, they may actually be more common than we realize," noted Harrison, who is also an investigator with the Howard Hughes Medical Institute. "What this tells us is that the human immune system can fine-tune its response to the flu and actually produce, albeit at a low frequency, antibodies that neutralize a whole series of strains."

CH65 mimics many key aspects of sialic acid, hemagglutinin's natural receptor, and binds to portions of hemagglutinin that the virus cannot mutate without reducing its ability to infect human cells. After comparing CH65 with other antibodies produced from the donor's cells, the team was able to deduce how the donor's anti-flu immune response had evolved to produce such broadly reactive antibodies as a consequence of multiple virus exposures over time.

With this knowledge, Harrison believes it may be possible to develop vaccines that actively direct the immune response to provide broad protection against multiple strains of the influenza virus, ideally by targeting the same portions of hemagglutinin as CH65.

"Developing a flu vaccine is currently a hit-or-miss enterprise," according to Harrison. "We vaccinate with a virus or part of a virus and hope that the immune response will evolve in a useful direction.

But for viruses like influenza that mutate rapidly," he continued, "we want to have a response that does a really good job at blocking both the strain of the virus in the vaccine and many related strains as well. These results point out what strategies we might employ to achieve that goal."

This study was supported by the Howard Hughes Medical Institute, the US Department of Energy, and the National Center for Research Resources and National Institute of Allergy and Infectious Diseases of the National Institutes of Health.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 12 members of the Institute of Medicine and 13 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 395 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Children's visit the Vector blog.

Children's Hospital Boston | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>