Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fine-tuning the flu vaccine for broader protection

09.08.2011
Study reveals features of influenza virus and our response to it that could reduce the need for annual vaccinations

An antibody that mimics features of the influenza virus's entry point into human cells could help researchers understand how to fine-tune the flu vaccine to protect against a broad range of virus strains. Such protection could potentially reduce the need to develop, produce, and distribute a new vaccine for each flu season.

A multi-institutional team led by Stephen C. Harrison, PhD, chief of the Division of Molecular Medicine at Children's Hospital Boston, report their work and its implications for improving influenza vaccination this week in the Early Edition of the Proceedings of the National Academy of Sciences.

With each passing season, the two primary components of the influenza virus's outer coat, neuraminidase and hemagglutinin (the annual flu vaccine's primary target), mutate, allowing the virus to dodge any anti-flu immunity an individual may have generated in previous years. This evasion strategy, called antigenic drift, is why a new flu vaccine is necessary every year, a process that can take upwards of seven months.

From a public health perspective, an ideal influenza vaccine would protect against multiple strains of the virus, regardless of their hemagglutinin structure. The antibody, discovered by Harrison's collaborators at Duke University Medical Center and called CH65, gives new insights into how the immune system's response to hemagglutinin evolves over time, knowledge that could guide the development of just such a vaccine.

The researchers started with cells donated by an individual who received the flu vaccine for 2007. From those cells, they used genomic tools to generate a suite of antibodies, including CH65, that bound to and neutralized hemagglutinin from several seasonal flu strains. CH65 alone could bind to and neutralize hemagglutinin from 30 of the 36 strains tested.

"While it's unusual to find such broadly effective antibodies to the flu virus, they may actually be more common than we realize," noted Harrison, who is also an investigator with the Howard Hughes Medical Institute. "What this tells us is that the human immune system can fine-tune its response to the flu and actually produce, albeit at a low frequency, antibodies that neutralize a whole series of strains."

CH65 mimics many key aspects of sialic acid, hemagglutinin's natural receptor, and binds to portions of hemagglutinin that the virus cannot mutate without reducing its ability to infect human cells. After comparing CH65 with other antibodies produced from the donor's cells, the team was able to deduce how the donor's anti-flu immune response had evolved to produce such broadly reactive antibodies as a consequence of multiple virus exposures over time.

With this knowledge, Harrison believes it may be possible to develop vaccines that actively direct the immune response to provide broad protection against multiple strains of the influenza virus, ideally by targeting the same portions of hemagglutinin as CH65.

"Developing a flu vaccine is currently a hit-or-miss enterprise," according to Harrison. "We vaccinate with a virus or part of a virus and hope that the immune response will evolve in a useful direction.

But for viruses like influenza that mutate rapidly," he continued, "we want to have a response that does a really good job at blocking both the strain of the virus in the vaccine and many related strains as well. These results point out what strategies we might employ to achieve that goal."

This study was supported by the Howard Hughes Medical Institute, the US Department of Energy, and the National Center for Research Resources and National Institute of Allergy and Infectious Diseases of the National Institutes of Health.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 12 members of the Institute of Medicine and 13 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 395 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Children's visit the Vector blog.

Children's Hospital Boston | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>